Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Noise Source Identification of a Diesel Engine Using Inverse Boundary Element Method

The inverse boundary element method (IBEM) is presented to accurately identify the noise sources of a diesel engine in this study. The sound pressures on four near-field planes were measured as inputs for the method. Then, the acoustic model of the full diesel engine was established using the boundary element method, and the acoustic transfer vectors (ATV) between the surface normal velocity and acoustic pressure at field points were calculated over the frequency range of interest. Based on the measured sound pressure and the ATVs, the surface normal velocity distribution of the diesel engine was reconstructed by the IBEM. The reconstructed pressures at two reference field points were compared with the measured ones. Furthermore, the panel contribution of each engine component was analyzed through the reconstructed surface velocity.
Technical Paper

Pump-End Control Technology for Small Engine Management System

A pump-end control technology for pump-nozzle fuel supply unit, in which the pump is driven and controlled electrically for pressurizing and metering the fuel fed into an engine, is studied. The unit is composed of a solenoid driven plunger pump, a high-pressure fuel tube, and an auto-open nozzle, and only the pump is propelled by PWM power from an ECU. To achieve a higher metering accuracy, a metering theory deciding the fuel discharging rate was developed by studying the system using a physical-mathematical model. The developed so called T3 theory makes the fuel supply unit with excellent metering consistency under various conditions, which can meet the requirement of fuel supply unit application to small engine management system. The study reveals that an electrically characterized variable, T3, which is associated with the net output energy, can directly results in a mass discharge.
Technical Paper

Investigations of Atkinson Cycle Converted from Conventional Otto Cycle Gasoline Engine

Hybrid electric vehicles (HEVs) are considered as the most commercial prospects new energy vehicles. Most HEVs have adopted Atkinson cycle engine as the main drive power. Atkinson cycle engine uses late intake valve closing (LIVC) to reduce pumping losses and compression work in part load operation. It can transform more heat energy to mechanical energy, improve engine thermal efficiency and decrease fuel consumption. In this paper, the investigations of Atkinson cycle converted from conventional Otto cycle gasoline engine have been carried out. First of all, high geometry compression ratio (CR) has been optimized through piston redesign from 10.5 to 13 in order to overcome the intrinsic drawback of Atkinson cycle in that combustion performance deteriorates due to the decline in the effective CR. Then, both intake and exhaust cam profile have been redesigned to meet the requirements of Atkinson cycle engine.
Technical Paper

Organic Compound Exhaust Analysis from Ethanol-Gasoline Fueled Motorcycle

Ethanol-Gasoline was being promoted in China. Ethanol as substitute fuel could save such nature resource that cannot be regenerated. At the same time, oxygen additives also have potential dangerous, such as, poisonous organic compound. In this paper, a typical 125 mL four stroke single cylinder motorcycle was driven on chassis dynamometer at 5 different stable conditions which is specified in ECE 40 driving cycle. At each stably driving condition, raw gas from exhaust pipe was collected in corresponding bags respectively. Those samples were analyzed by means of gas chromatogram and mass spectrum analyzer (Agilent GC6890-MS5973). Poisonous ethanol compound such as benzene, toluene had been found in samples from ethanol blended fueled motorcycle exhausts and compared with samples from that of pure gasoline.
Technical Paper

Initial Stress and Manufacture Stress Testing in Transparent Material

Transparent materials such as Plexiglas and glass are applied in airplane and boat widely as the windows and hatches. There are three type stresses in the structure made of Plexiglas or glass, which are residual stresses from the casting, residual stresses due to manufacturing process involving sheet forming structure and the stresses from serving period. In the paper the stresses are studied by laser scattered Photoelasticy method. Phase shift method is presented to recognize scattered light patterns automatically. The residual stresses in Plexiglas plate and shell were analyzed by thin plate-shell theory. Stresses in the Plexiglas and shell were tested by laser scattered Photoelastic method.
Technical Paper

Investigation of Internal Thermal Impact Effect on Motorcycle Catalytic Converter Activity and Microstructure

Chinese new legislations on two wheels and mopeds have been published recently. Depending on the latest exhaust statistic analyses, with the resulting of tighter limits, the application of catalytic converters is becoming a prevalent and a cost-efficient solution for Chinese motorcycle manufacturers. The phenomenon of exhaust temperature changes rapidly during real driving process is well known as one of major destructive factors which have effects upon converter's durability. One 125 cm3 motorcycle is selected as a typical model in this research project. Exhaust temperature of the 125 cm3 motorcycle is measured and recorded during the process of ECE 40 driving cycle. A simulation test system has been set up successfully depending on those temperature data. Conversion ratio of converter sample lost distinctly after 18 hours' thermal impact tests. After further analyses, there were not evident changes in microstructure and substance on the surface of converter.