Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Reducing NOx Emissions from a Common-Rail Engine Fueled with Soybean Biodiesel

2011-04-12
2011-01-1195
Performance and emissions of a common-rail production diesel engine fueled with soybean-derived biodiesel was investigated. The work was broken down into two categories. First, adjustment of injection timing and EGR ratio was investigated as a means to reduce NOx emissions to levels comparable with those obtained when using pure diesel fuel. Next, simultaneous reduction of NOx and soot emissions was investigated using high rates of EGR combined with late injection timings to approach the low-temperature combustion regime. Results from the first part of the study indicate that optimization of engine control parameters for use with biodiesel can be beneficial to performance and emissions. It was found that adjusting the engine's MAF setpoint table to reflect the difference in stoichiometric air-fuel ratio between diesel and biodiesel brought NOx emissions to comparable or lower levels.
Journal Article

The Effects of EGR and Injection Timing on the Engine Combustion and Emission Performances Fueled by Butanol-Diesel Blends

2012-04-01
2011-01-2473
The combustion and emission characteristics of a diesel engine running on butanol-diesel blends were investigated in this study. The blending ratio of n-butanol to diesel was varied from 0 to 40 vol% using an increment of 10 vol%, and each blend was tested on a 2.7 L V6 common rail direction injection diesel engine equipped with an EGR system. The test was carried out under two engine loads at a constant engine speed, using various combinations of EGR ratios and injection timings. Test results indicate that n-butanol addition to engine fuel is able to substantially decrease soot emission from raw exhaust gas, while the change in NOx emissions varies depending on the n-butanol content and engine operating conditions. Increasing EGR ratio and retarding injection timing are effective approaches to reduce NOx emissions from combustion of n-butanol-diesel blends.
X