Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Theoretical and Practical Mechanisms on Lowering Exhaust Emission Levels for Diverse Types of Spark Ignition Engines

2008-06-23
2008-01-1545
The exhaust aftertreatment strategy is one of the most fundamental aspects of spark ignition engine technologies. For various types of engines (e.g., carburetor engine, PFI engine and GDI engine), measuring, purifying, modeling, and control strategies regarding the exhaust aftertreatment systems vary significantly. The primary goal of exhaust aftetreatment systems is to reduce the exhaust emission levels of NOx, HC and CO as well as to lower combustion soot. In general, there is a tradeoff among different engine performance aspects. The exhaust catalytic systems, such as the three way catalyst (TWC) and lean NOx trap (LNT) converters, can be applied together with the development of other engine technologies (e.g., variable valve timing, cold start). With respect to engine soot, some advanced diagnosing techniques are essential to obtain thorough investigation of exhaust emission mechanisms.
Technical Paper

Simulating the Flow and Soot Loading in Wall- Flow DPF Using a Two-Dimensional Mesoscopic Model

2018-04-03
2018-01-0955
A two-dimensional mesoscopic approach has been developed to investigate the flow and soot loading in the micro-channels of diesel particulate filter. Soot particle size examined is in the range of 10 nm to 10 μm. The flow is solved by an incompressible lattice Boltzmann model and the transport of solid particle is described in a Lagrangian frame of reference by cell automation probabilistic model. The lattice Boltzmann-cell automation probabilistic model (LB-CA model) is validated with the results of previous studies. The heterogeneous porous wall of DPF is generated by quartet structure generation set (QSGS). The effects of porous wall on the pressure field and velocity field are investigated. The distribution and deposition of soot particles with different sizes in clean channels are simulated. The dynamic evolution of solid boundary in soot particle capture process is investigated and the effects of the deposited soot particles on flow field are evaluated.
Technical Paper

A Simulation Study on Particle Motion in Diesel Particulate Filter Based on Microcosmic Channel Model

2018-04-03
2018-01-0964
As the prime after-treatment device for diesel particulate matter (PM) emission control, Diesel Particulate Filter (DPF) has been widely used for its high particle capture efficiency. In order to study the particle motion and deposition distributions in the DPF inlet channel, a 2-D wall flow DPF microcosmic channel model is built in this paper. The motion trajectories of particles with different sizes are investigated considering the drag force, Brownian motion, gravity and Saffman lift. The effects of the space velocity on particle motion trajectories and deposition distributions inside the inlet channel are evaluated. These results demonstrate that the particle motion trajectories are highly dependent on particle sizes and influenced by the space velocity. The effect of the Brownian motion is obvious for fine particles and suppressed when the space velocity is raised.
Technical Paper

Analysis on Emission Characteristics of Urban Buses Based on Remote Online Monitoring

2021-04-06
2021-01-0601
In this study, a new system of assessment method was developed to evaluate the characteristics of urban buses based on remote online monitoring. Four types of buses, including China V emission standards diesel bus, lean-burn CNG bus, air-fuel equivalence ratio combustion CNG bus and gas-electric hybrid bus, were chosen as samples to analyze the emission characteristics of urban buses with different engine types in urban scenario. Based on the traffic conditions in Beijing, the actual emission characteristics of buses under newly-built driving conditions were analyzed. Moreover, the emission factor database of urban buses in Beijing was established to analyze the characteristics of excess emission. The research results are shown as follows. 1) Compared with other types of buses, NOX emission factor and emission rate of lean-burn CNG bus are much higher.
Technical Paper

The Application and Optimization of EGR-LNT Synergetic Control System on Lean-burn Gasoline Engine

2015-04-14
2015-01-1036
Ensuring lower emissions and better economy (fuel economy and after-treatment economy) simultaneously is the pursuit of future engines. An EGR-LNT synergetic control system was applied to a modified lean-burn CA3GA2 gasoline engine. Results showed that the synergetic control system can achieve a better NOx reduction than sole EGR and sole LNT within a proper range of upstream EGR rate and without the penalty in fuel consumption. It also has the potential to save costly noble metals in LNT, but excessive or deficient upstream EGR would make the synergetic control system inefficiency. In order to guarantee the objectivity of the effect of EGR-LNT synergetic control system on NOx reduction, another modified lean-burn CA4GA5 gasoline engine was additionally tested.
X