Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Torque Vectoring Control for Distributed Drive Electric Vehicle Based on State Variable Feedback

2014-04-01
2014-01-0155
Torque Vectoring Control for distributed drive electric vehicle is studied. A handling improvement algorithm for normal cornering maneuvers is proposed based on state variable feedback control: Yaw rate feedback together with steer angle feedforward is employed to improve transient response and steady gain of the yaw rate, respectively. According to the feedback coefficient's influence on the transient response, an optimization function is proposed to obtain optimum feedback coefficients under different speeds. After maximum feedforward coefficients under different speeds are obtained from the constraint of the motor exterior characteristic, final feedforward coefficients are calculated according to an optimal steering characteristic. A torque distribution algorithm is presented to help the driver to speed up during the direct yaw moment control.
Technical Paper

Research on Vehicular Hydrostatic Energy Storage Transmission and Its Control System

1997-11-17
973179
Although Hydrostatic Transmission System (HTS) had been used in many places, such as machine tools, agriculture machinery, construction machinery, and vehicles, it had not been used in good performance. Twenty years ago many people began to design new hydrostatic transmission with higher efficiency. Hydrostatic Energy Storage Transmission System (HESTS) is one of new hydrostatic transmission system with higher efficiency. HESTS is more fit for being used in vehicle that is always running in undulating ground or starting and braking frequently. Construction of vehicular HESTS was analyzed, mathematical model of vehicular HESTS was established. The needed control strategies of vehicular HESTS were analyzed because there are many variables would be controlled in the new transmission system.
Technical Paper

Nonlinear Estimation of Vehicle Sideslip Angle Based on Adaptive Extended Kalman Filter

2010-04-12
2010-01-0117
An adaptive sideslip angle observer based on discrete extended Kalman filter (DEKF) is proposed in this paper and tire-road friction adaptation is also considered. The single track vehicle model with nonlinear tire characteristics is adopted. The tire parameters can be easily obtained through road test data without using special test rig. Afterwards, this model is discretized and the maximum value of tire-road friction is modeled as the third state variable. Through the measurement of vehicle lateral acceleration and yaw rate, the tire-road adhesion coefficient can be timely updated. Simulations with experimental data from road test and driving simulator have confirmed that DEKF has very high accuracy. The convergent speed of DEKF relies on the magnitude of lateral excitation.
Technical Paper

Precise Steering Angle Control of Lane Change Assist System

2017-09-23
2017-01-2002
After obtaining the optimal trajectory through the lane change decision and trajectory planning, the last key technology for the automatic lane change assist system is to carry out the precise and rapid steering actuation according to the front wheel angle demand. Therefore, an automatic lane change system model including a BLDCM (brushless DC motor) model, a steering system model and a vehicle dynamics model is first established in this paper. Electromagnetic characteristics of the motor, the moment of the inertia and viscous friction etc. are considered in these models. Then, a SMC (Sliding Mode Control) algorithm for the steering system is designed to follow the steering angle input. The control torque of the steering motor is obtained through the system model according to steering angle demand. After that, the control current is calculated considering of electromagnetic characteristics of the BLDCM. Debugging and optimization of the control algorithm are done through simulations.
Technical Paper

Research of Eliminating Method of Undesired Shifting for Vehicle with Dual Clutch Transmission

2013-04-08
2013-01-0485
The undesired shifting phenomenon(USP) occurs easily under the braking or climbing conditions etc., and its impact is the discomfort to the passengers or cause of vehicle's state contrary to the driver's intention, meanwhile, the wear of the clutch and synchronizer is increased, so their lifetime are greatly shortened. To the vehicle with dual clutch transmission (DCT), undesired shifting phenomenon will lead to frequent and unnecessary actuation of synchronizer for the use of pre-engagement synchronizer in the shifting control; therefore, its occurrence should be eliminated as far as possible. In this paper, the process of the undesired shifting of the vehicle with DCT is elaborated, then the generating cause of USP is described based on directed graph.
Technical Paper

An Expert Fuzzy Control of Automatic Mechanical Transmission Clutch

1999-09-14
1999-01-2814
The control of vehicle clutches is somehow different of non-linearity from others and needs consideration of control matching between the clutch and engine. For that reason, an expert fuzzy control is proposed in this paper, which is integrated with expert control, fuzzy control and hierarchical control. By real vehicle test results, the control function is verified.
Technical Paper

Control Optimization of a Compound Power-Split Hybrid Transmission for Electric Drive

2015-04-14
2015-01-1214
A novel compound power-split hybrid transmission based on a modified Ravigneaux gear set is presented. The equivalent lever diagrams are used to investigate the electric operating modes for the hybrid powertrain, and then its dynamic and kinematic characteristics as well as efficiency characteristics are described in equations. A brake clutch mounted on the carrier shaft is proposed to enhance the electric driving efficiency for the hybrid transmission. Three types of electric operating mode are analyzed by the simplified combined lever diagrams and the system efficiency and torque characteristics for these electric operating modes are compared. A major influence on output torque of the hybrid transmission derived from the torque capability of motors and brake clutch is depicted.
Technical Paper

Development of a Compact Compound Power-Split Hybrid Transmission Based on Altered Ravigneaux Gear Set

2014-04-01
2014-01-1793
Several types of power-split hybrid transmissions are outlined and the strengths and weaknesses of typical compound power-split prototype designs are summarized in this paper. Based on an modified Ravigneaux gear set, a novel compound power-split hybrid transmission with compact mechanical structure is presented, its dynamic and kinematic characteristics in equations and operating modes are described, and then equivalent lever diagrams are used to investigate the proposed compound power-split device. Control strategies in different operating modes are discussed with the simplified combined lever diagram, and a global optimization method is implemented to find the optimum operation point for the hybrid powertrain. To evaluate the fuel economy of a hybrid car equipped with this hybrid transmission, a forward powertrain simulation model is developed and real vehicle performance tests are conducted in the chassis dynamometer.
Book

Road Vehicle Dynamics Problems and Solutions

2010-04-13
This workbook, a companion to the book Road Vehicle Dynamics, will enable students and professionals from a variety of disciplines to engage in problem-solving exercises based on the material covered in each chapter of that book. Emphasizing application more than theory, the workbook presents systematic rules of analysis that students can follow in a step-by-step manner to understand the efficiencies or shortcomings of various techniques. Readers will gain a greater understanding of the factors influencing ride, handling, braking, acceleration, and vehicle safety.
Book

Road Vehicle Dynamics and Problems and Solutions: Set

2010-04-28
This set combines the book Road Vehicle Dynamics with its corresponding workbook companion, Road Vehicle Dynamics: Problems and Solutions. Road Vehicle Dynamics provides a detailed overview of the dynamics of road vehicle systems, giving readers an understanding of how physical laws, human factor considerations, and design choices affect ride, handling, braking, acceleration, and vehicle safety. Chapters cover analysis of dynamic systems, tire dynamics, ride dynamics, vehicle rollover analysis, handling dynamics, braking, acceleration, total vehicle dynamics, and accident reconstruction. The workbook will enable students and professionals from a variety of disciplines to engage in problem-solving exercises based on the material covered in each chapter of that book. It presents systematic rules of analysis that students can follow in a step-by-step manner to understand the efficiencies or shortcomings of various techniques.
X