Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

An ADAS-Oriented Virtual EPS Platform Based on the Force Feedback Actuator of the Steer-by-Wire System

Electric Power Steering (EPS) is the actuator of several lateral-dynamic-related Advanced Driver Assistance Systems (ADAS). A driving simulator with EPS will be much helpful for the ADAS development. However, if a real EPS is used in the driving simulator, it is quite difficult to realize the road reaction force accurately and responsively. To overcome this weakness, a virtual EPS platform is established. The virtual EPS platform contains two parts: one is the vehicle and EPS model, the other is the force feedback actuator (FFA) of the Steer-by-Wire (SBW) system. The FFA is an interface between the driver and the EPS/vehicle model. The reactive torque of the FFA is obtained based on the models. Meanwhile, the input of the EPS model is the steering angle of the FFA. Comparing to a real EPS, the virtual EPS platform has a problem of instability because of the actuator lag of the FFA. Therefore, a damping control method is applied to make the system stable.
Technical Paper

Driver Lane Keeping Characteristic Indices for Personalized Lane Keeping Assistance System

In the recent years, the interaction between human driver and Advanced Driver Assistance System (ADAS) has gradually aroused people’s concern. As a result, the concept of personalized ADAS is being put forward. As an important system of ADAS, Lane Keeping Assistance System (LKAS) also attracts great attention. To achieve personalized LKAS, driver lane keeping characteristic (DLKC) indices which could distinguish different driver lane keeping behavior should be researched. However, there are few researches on DLKC indices for personalized LKAS. Although there are many researches on modeling driver steering behavior, these researches are not sufficient to obtain DLKC indices. One reason is that most of researches are for double lane change behavior which is different from driver lane keeping behavior. The other reason is that the researches on driver lane keeping behavior only provide model structure and rarely discuss identification procedure such as how to select suitable data.
Technical Paper

Adaptive Design of Driver Steering Override Characteristics for LKAS

Lane Keeping Assistance System (LKAS) is a typical lateral driver assistance system with low acceptance. One of the main reasons is that fixed parameters cannot satisfy individual differences. So LKAS adaptive to driver characteristics needs to be designed. Driver Steering Override (DSO) process is an important process of LKAS. It happens when contradiction between driver’s intention and system behavior occurs. As feeling of overriding will affect the overall experience of using LKAS, the design of DSO characteristics is worthy of attention. This research provided an adaptive design scheme aiming at DSO characteristics for LKAS by building Driver Preference Model (DPM) based on simulator test data from preliminary experiments. The DPM was to represent the relationship between driver characteristics indices and driver preferred system characteristics indices. So that new drivers’ preference can be predicted by DPM based on their own daily driving data with LKAS switched off.
Technical Paper

Evaluation and Optimization of Driver Steering Override Strategy for LKAS Based on Driver’s Acceptability

In order to satisfy design requirements of Lane Keeping Assistance System (LKAS), a Driver Steering Override (DSO) strategy is necessary for driver’s interaction with the assistance system. The assistance system can be overridden by the strategy in case of lane change, obstacle avoidance and other emergency situations. However, evaluation and optimization of the DSO strategy for LKAS cannot easily be completed quantitatively considering driver’s acceptability. In this research, firstly subjective and objective evaluation experiment is designed. Secondly, correlations between the subjective and the objective evaluation results are established by using regression analysis. Finally, based on the correlations established previously, the optimal performance of DSO strategy is obtained by setting the desired comprehensive evaluation ratings as the optimized goal.
Technical Paper

Study on Important Indices Related to Driver Feelings for LKA Intervention Process

Lane Keeping Assistance (LKA) system is a very important part in Advanced Driver Assistance Systems (ADAS). It prevents a vehicle from departing out of the lane by exerting intervention. But an inappropriate performance during LKA intervention makes driver feel uncomfortable. The intervention of LKA can be divided into 3 parts: intervention timing, intervention process and intervention ending. Many researches have studied about the intervention timing and ending, but factors during intervention process also affect driver feelings a lot, such as yaw rate and steering wheel velocity. To increase driver’s acceptance of LKA, objective and subjective tests were designed and conducted to explore important indices which are highly correlated with the driver feelings. Different kinds of LKA controller control intervention process in different ways. Therefore, it’s very important to describe the intervention process uniformly and objectively.