Refine Your Search

Topic

Search Results

Journal Article

Effect of Injection Parameters on Spray Characteristics of Urea-SCR System

2013-04-08
2013-01-1067
Urea-SCR system is one of the after-treatment methods for diesel engines, which could effectively reduce the NOX emissions and enable diesel engines to meet increasingly stringent emission legislations. Within the urea-SCR system, characteristics of urea-solution spray, especially the distribution uniformity of spray droplets as well as gaseous NH₃ within the exhaust pipe, play an important role in the efficiency of catalytic reduction. In this paper, an SCR spray visualization test bench was set up. Urea-solution from a non-air-assist injector is injected into the steady stream of simulated exhaust gas flow. The transient characteristics of spray are recorded by high-speed photography. Specific spray characteristics in the original photographs, i.e., mixing distance and degree of uniformity are extracted. The influence of injection pressure and injection angle on spray characteristics are tested in different sets of experiments.
Technical Paper

Effect of Coflow Temperature on the Characteristics of Diesel Spray Flames and its Transient HC Distribution under Atmospheric Conditions

2007-10-29
2007-01-4028
A Controllable Active Thermo-Atmosphere (CATA) Combustor enables the investigation of stabilization mechanisms in an environment that decouples the turbulent chemical kinetics from the complex recirculating flow. Previous studies on combustion of the low-pressure fuel jets in the Controllable Active Thermo-Atmosphere (CATA) showed non-linear effect of coflow temperature on autoignition delay and the randomness of autoignition sites. In this work, a diesel spray is injected into the CATA with the injection pressure at 20MPa from a single-hole injector and the autoignition and combustion process of the spray is recorded by a high-speed camera video. The multipoint autoignition of diesel spray is observed in the CATA and the subsequent combustion process is analyzed. The results show that autoignition phenomenon plays an important role in the stabilization of the lifted flames of diesel spray under low coflow temperature.
Technical Paper

Research into Autoignition Characteristics of Diesel Fuel in a Controllable Active Thermo-Atmosphere

2006-04-03
2006-01-0073
A novel method is applied to analysis the autoignition phenomenon. Experiments on the study of autoignition characteristics of diesel fuel were carried out with a Controllable Active Thermo-Atmosphere Combustor. The results show that the method for autoignition studying of liquid fuel is of feasibility. Autoignition delay time and autoignition height from the nozzle increase with the coflow temperature decreasing and autoignition delay time changes sensitively under lower coflow temperature. Liftoff height of diesel spray flame decreases with the increasing of coflow temperature. Lower temperature causes higher variance of liftoff height. It might be speculated that there are two different mechanisms of flame stabilization that the lower lift-off heights flames are related to a balance between the flow velocity and flame speed while the higher lift-off heights flames are stabilized by the mixture autoignition.
Technical Paper

Material Compatibilities of Biodiesels with Elastomers, Metals and Plastics in a Diesel Engine

2009-11-02
2009-01-2799
The effects of biodiesel on the swelling of the elastomers and plastics and the corrosion of metals are studied by the immersion tests. The results indicate that biodiesels make little corrosion effect on aluminum, steel and little swelling impact on plastics, but a significant corrosion may be taken place on cooper and brass for some sourced biodiesels. For nitrile-butadiene rubber, the variation of swelling properties in biodiesels is slightly higher than that in diesel. For the non-diesel-resistant elatomers, the variation of swelling properties is lower than those in diesel. The production process and biodiesel source have an influence on the result of elastomer swelling and corrosion. The relationship between the impact of biodiesel on materials and biodiesels properties are also discussed.
Technical Paper

Characteristics of Output Performances and Emissions of Diesel Engine Employed Common Rail Fueled with Biodiesel Blends from Wasted Cooking Oil

2008-06-23
2008-01-1833
In this paper, the characteristics of performance and emissions of diesel and biodiesel blends are studied in a four-cylinder DI engine employing common rail injection system. The results show that engine output power is further reduced and brake specific fuel consumption (BSFC) increased with the increase of the blend concentration. B100 provides average reduction by 8.6% in power and increase by 11% in BSFC. With respect to the emissions, although NOx emissions were increased with increasing the blend concentration, the increase depends on the load. Filter smoke number is reduced with increasing the blend concentration. At the same time, NO, NO2 and other specific emissions are also investigated. In addition, difference of performance and emission between standard parameters of ECU and modified parameters of ECU is investigated for B10 and B20 based on same output power. The results show that NOx emission and FSN are still lower than baseline diesel.
Technical Paper

Characteristics of Combustion and Emissions in a DI Engine Fueled with Biodiesel Blends from Soybean Oil

2008-06-23
2008-01-1832
Combustion and emission characteristics of diesel and biodiesel blends (soybean methyl ester) were studied in a single-cylinder Direct Injection (DI) engine at different loads and a constant speed. The results show that NOx emission and fuel consumption are increased with increasing biodiesel percentage. Reduction of smoke opacity is significant at higher loads with a higher biodiesel ratio. Compared with the baseline diesel fuel, B20 (20% biodiesel) has a slight increase of NOx emission and similar fuel consumption. Smoke emission of B20 is close to that of diesel fuel. Results of combustion analysis indicate that start of combustion (SOC) for biodiesel blends is earlier than that for diesel. Higher biodiesel percentage results in earlier SOC. Earlier SOC for biodiesel blends is due to advanced injection timing from higher density and bulk modulus and lower ignition delay from higher cetane number.
Technical Paper

Characteristics of Particulates and Exhaust Gases Emissions of DI Diesel Engine Employing Common Rail Fuel System Fueled with Bio-diesel Blends

2008-06-23
2008-01-1834
In this paper, characteristics of gas emission and particle size distribution are investigated in a common rail diesel engine fueled with biodiesel blends. Gas emission and particle size distribution are measured by AVL FTIR - SESAM and SMPS respectively. The results show that although biodiesel blends would result in higher NOx emissions, characteristics of NOx emissions were also dependent on the engine load for waste cooking oil methyl ester. Higher blend concentration results in higher NO2 emission after two diesel oxidation catalyst s (DOC). A higher blend concentration leads to lower CO and SO2 emissions. No significant difference of Alkene emission is found among biodiesel blends. The particle size distributions of diesel exhaust aerosol consist of a nucleation mode (NM) with a peak below 50N• m and an accumulation mode with a peak above 50N • m. B100 will result in lower particulates with the absence of NM.
Technical Paper

Effect of Additives on Diesel Spray Flames in a Controllable Active Thermo-Atmosphere

2008-04-14
2008-01-0931
The active components, such as OH and their concentrations in the coflow, have a strong effect on the combustion process of diesel fuel spray flames in the Controllable Active Thermo-Atmosphere (CATA), which then will affect the soot incandescence of the spray flames. CO2 and H2O2, the additives which have contrary effect on the concentration of the active components, were mixed separately into the thermo-atmosphere before the jet spray were issued into the coflow, which changed the boundary condition around the central jet and influenced the combustion characteristics and soot incandescence. The combustion characteristics such as ignition delay and flame liftoff height of the central spray flames are measured and the linkage between these two parameters is investigated at different coflow temperatures.
Journal Article

Estimation on the Location of Peak Pressure at Quick Start of HEV Engine Employing Ion Sensing Technology

2008-06-23
2008-01-1566
In this paper an estimation method on location of peak pressure (LPP) employing flame ionization measurement, with the spark plug as a sensor, was discussed to achieve combustion parameters estimation at quick start of HEV engines. Through the cycle-based ion signal analysis, the location of peak pressure can be extracted in individual cylinder for the optimization of engine quick start control of HEV engine. A series of quick start processes with different cranking speed and engine coolant temperature are tested for establishing the relationship between the ion signals and the combustion parameters. An Artificial Neural Network (ANN) algorithm is used in this study for estimating these two combustion parameters. The experiment results show that the location of peak pressure can be well established by this method.
Technical Paper

In-Cycle Knocking Detection and Feedback Control Based on In-Cylinder Pressure and Ion Current Signal in a GDI Engine

2016-04-05
2016-01-0816
Due to much higher pressure and pressure rising rate, knocking is always of potential hazards causing damages in the engine and high NOX emissions. Therefore, the researchers have focused on knocking diagnosis and control for many years. However, there is still lack of fast response sensor detecting in-cycle knocking. Until now, the feedback control based on knocking sensor normally adjusts the injection and ignition parameters of the following cycles after knocking appears. Thus in-cycle knocking feedback control which requires a predictive combustion signal is still hard to see. Ion current signal is feasible for real-time in-cylinder combustion detection, and can be employed for misfiring and knocking detection. Based on incylinder pressure and ion current signals, the in-cycle knocking feedback control is investigated in this research. The 2nd-order differential of in-cylinder pressure, which means the response time of pressure rising rate dPR, is employed for knocking prediction.
Journal Article

Study of the Combustion Characteristics of a HCCI Engine Coupled with Oxy-Fuel Combustion Mode

2017-03-28
2017-01-0649
The present work proposed to implement oxy-fuel combustion mode into a homogeneous charge compression ignition engine to reduce complexity in engine emissions after-treatment and lower carbon dioxide emission. The combination of oxy-fuel combustion mode with homogeneous charge compression ignition engine can be further optimized by the utilization of direct high temperature and pressure water injection to improve cycle performance. A retrofitted conventional diesel engine coupled with port fuel injection and direct water injection is utilized in this study. A self-designed oxygen and carbon dioxide mixture intake system with flexible oxygen fraction adjustment ability is implemented in the test bench to simulate the adoption of exhaust gas recirculation. Water injection system is directly installed in the combustion chamber with a modified high speed solenoid diesel injector.
Technical Paper

Combined Technologies for Efficiency Improvement on a 1.0 L Turbocharged GDI Engine

2019-04-02
2019-01-0233
The CO2 reduction request for automotive industry promotes the efforts on the engine thermal efficiency improvement. The goal of this research is to improve the thermal efficiency on an extremely downsized 3-cylinder 1.0 L turbocharged gasoline direct injection engine. Effects of compression ratio, exhaust gas recirculation (EGR), valve timing and viscosity of oil on fuel economy were studied. The results show that increasing compression ratio, from 9.6 to 12, can improve fuel economy at relative low load (below 12 bar BMEP), but has a negative effect at high load due to increased knock intensity. EGR can significantly reduce the pumping loss at low load, optimize combustion phase and reduce exhaust gas temperature. Therefore, the fuel consumption is reduced at all test points. The average brake thermal efficiency (BTE) benefit percentage is 3.47% with 9.6 compression ratio and 5.33 % with 12 compression ratio.
Technical Paper

Auto-ignition Characteristics of Lubricant Droplets under Hot Co-Flow Atmosphere

2018-09-10
2018-01-1807
It has been revealed by researches that lubricant properties have a great effect on the low-speed pre-ignition (LSPI) frequency in downsizing turbocharged direct-injection engines which are developed for better fuel economy. Droplets of lubricant or lubricant-gasoline mixture are considered to be the potential pre-ignition sources. Those droplets fly into the combustion chamber and ignite the gasoline-air mixture. To study lubricant droplets fundamentally, a novel set of droplet auto-ignition system is designed based on a Dibble Burner for this experiment. Influences of metallic additive contents, viscosities, lubricant diluted with gasoline and waste lubricant on the ignition delay of droplets are investigated by testing 12 groups of lubricants or lubricant-gasoline mixture. The equivalent diameter of each droplet generated by micro-syringes is around 2.1 mm. The co-flow temperature varies from 1123 K to 1223 K, and the experiments are carried out at atmospheric pressure.
Technical Paper

Knock and Pre-Ignition Detection Using Ion Current Signal on a Boosted Gasoline Engine

2017-03-28
2017-01-0792
In order to meet the ever more stringent demands on the CO2 emission reduction, downsized modern gasoline engine with highly boosted turbo charger meets new challenges such as super knock and pre-ignition, which will influence the engine combustion efficiency, smooth operation and even cause mechanical failure. A spark plug type ion current detection sensor was used in a 1.8L turbo charged gasoline engine. The ion-current wave signal differed greatly under different engine operating conditions such as without knock, with knock of different knock intensities. The frequency spectrum of ion-current was also studied, by the method of discrete Fourier transform (DFT). In knocking cycles, there were fluctuations of frequency 8-13 kHz both in the combustion pressure signal and in the ion current signal, proving the existence of knock information.
Technical Paper

Effect of Direct Water Injection Timing on Common Rail Diesel Engine Combustion Process and Efficiency Enhancement

2017-10-08
2017-01-2281
The present work aims at optimizing diesel engine combustion efficiency with optimized water injection strategy. The engine had been modified based on a two-cylinder mechanical pump diesel engine into common rail diesel engine with capability of direct water injection. The direct water injection system was designed and manufactured independently. An air-fluid booster was utilized to establish the water injection pressure up to 40MPa. Customized diesel injector was selected to be used as water injector in this study. Water injection strategy was optimized in detail with injection timing around TDC which ranges from 12°CA BTDC to -5°CA BTDC under 10 bar IMEP. The engine efficiency can be improved under selected water injection strategy due to the increment of work fluid in the combustion chamber. Moreover, the nitric oxides emissions show decrement around 10%.
Technical Paper

Experimental and Numerical Study on Combustion Characteristics of Hydrogen-Argon Jet in a Hot Vitiated Co-flow

2018-04-03
2018-01-1139
This paper presents a study of the Hydrogen/Argon lifted flames in a hot vitiated co-flow. The effects of the dilution of argon in central fuel, the volume fraction of argon in the central fuel, co-flow temperature and the velocity of the central jet on the flame lift-off length were studied, and the numerical simulation with PDF model were analyzed as well. The results could provide theoretical supports for the research of the hydrogen fueled argon cycle engine which is a potential way not only to increase the indicated thermal efficiency of internal combustion engine but also realize the zero emission. The result shows that at the same boundary condition the central jet of H2+Ar has a lower lift-off length than the central jet of H2+N2. By the numerical simulation, the jet flame of H2+Ar has a higher maximum temperature and maximum OH concentration. It indicated that the dilution of argon could promote the combustion reaction.
Journal Article

Simulation Study of Water Injection Strategy in Improving Cycle Efficiency Based on a Novel Compression Ignition Oxy-Fuel Combustion Engine

2018-04-03
2018-01-0894
The present work discusses a novel oxy-fuel combustion cycle utilized in compression ignition internal combustion engine. The most prominent feature of this cycle is that the air intake is replaced by oxygen; therefore nitric oxide (NOX) emission is eliminated. The enrichment of oxygen leads to higher flame speed and mass fraction consumption rate; on the other hand, the high concentration of oxygen presented during combustion will result in intense pressure rise rate which may cause severe damage to engine hardware. As water injection is already utilized in gasoline engine to control knocking, the utilization of water injection in optimizing oxy-fuel combustion process has been tested in this study. To understand the relationship between water injection strategy and cycle efficiency, computational fluid dynamics (CFD) simulations were carried out. The model was carefully calibrated with the experimental results; the errors were controlled within 3%.
Technical Paper

Numerical Study of Intake Manifold Water Injection on Characteristics of Combustion and Emissions in a Heavy-Duty Natural Gas Engine

2019-04-02
2019-01-0562
The performances of heavy-duty natural gas engines have been limited by combustion temperature and NOx emissions for a long time. Recently, water injection technology has been widely considered as a technical solution in reducing fuel consumption and emissions simultaneously in both gasoline and diesel engines. This paper focuses on the impacts of intake manifold water injection on characteristics of combustion and emissions in a natural gas heavy-duty engine through numerical methods. A computational model was setup and validated with experimental data of pressure traces in a CFD software coupled with detailed chemical kinetics. The simulation was mainly carried out in low-speed and full-load conditions, and knock level was also measured and calculated by maximum amplitude of pressure oscillations (MAPO).
Technical Paper

Simulation of Intake Manifold Water Injection in a Heavy Duty Natural Gas Engine for Performance and Emissions Enhancement

2018-09-10
2018-01-1653
The present work discusses the effects of intake manifold water injection in a six-cylinder heavy duty natural gas (NG) engine through one-dimensional simulation. The numerical study was carried out based on GT-Power under different engine working conditions. The established simulation model was firstly calibrated in detail through the whole engine speed sweep under full load conditions before the model of intake manifold water injector was involved, and the calibration was based on experimental data. The intake manifold water injection mass was controlled through adjustment of intake water/gas (water/natural gas) ratio, a water/gas ratio swept from 0 to 4 was selected to investigate the effects of intake manifold water injection on engine performance and emissions characteristics. On the other hand, the enhancement potential of intake manifold water injection in heavy duty NG engine under lean and stoichiometric condition was also investigated by the alteration of air-fuel ratio.
Technical Paper

Characteristics of Transient NOx Emissions of HEV under Real Road Driving

2020-04-14
2020-01-0380
To meet the request of China National 6b emission regulations which will be officially implemented in China, firstly including the RDE emission test limits, the transient emissions on real road condition are paid more attention. A non-plug-in hybrid light-duty gasoline vehicles (HEV) sold in the Chinese market was selected to study real road emissions employed fast response NOx analyzer from Cambustion Ltd. with a sampling frequency of 100Hz, which can measure the missing NO peaks by standard RDE gas analyzer now. Emissions from PEMS were also recorded and compared with the results from fast response NOx analyzer. The concentration of NOx emissions before and after the Three Way Catalyst (TWC) of the hybrid vehicle were also sampled and analyzed, and the working efficiency of the TWC in real road driving process was investigated.
X