Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Longitudinal Planning and Control Method for Autonomous Vehicles Based on A New Potential Field Model

An integrated automatic driving system consists of perception, planning and control. As one of the key components of an autonomous driving system, the longitudinal planning module guides the vehicle to accelerate or decelerate automatically on the roads. A complete longitudinal planning module is supposed to consider the flexibility to various scenarios and multi-objective optimization including safety, comfort and efficiency. However, most of the current longitudinal planning methods can not meet all the requirements above. In order to satisfy the demands mentioned above, a new Potential Field (PF) based longitudinal planning method is presented in this paper. Firstly, a PF model is constructed to depict the potential risk of surrounding traffic entities, including obstacles and roads. The shape of each potential field is closely related to the property of the corresponding traffic entity.
Technical Paper

Evaluation and Optimization of Driver Steering Override Strategy for LKAS Based on Driver’s Acceptability

In order to satisfy design requirements of Lane Keeping Assistance System (LKAS), a Driver Steering Override (DSO) strategy is necessary for driver’s interaction with the assistance system. The assistance system can be overridden by the strategy in case of lane change, obstacle avoidance and other emergency situations. However, evaluation and optimization of the DSO strategy for LKAS cannot easily be completed quantitatively considering driver’s acceptability. In this research, firstly subjective and objective evaluation experiment is designed. Secondly, correlations between the subjective and the objective evaluation results are established by using regression analysis. Finally, based on the correlations established previously, the optimal performance of DSO strategy is obtained by setting the desired comprehensive evaluation ratings as the optimized goal.
Journal Article

A Potential Field Based Lateral Planning Method for Autonomous Vehicles

As one of the key technologies in autonomous driving, the lateral planning module guides the lateral movement during the driving process. An integrated lateral planning module should consider the non-holonomic constraints of a vehicle, the optimization of the generated trajectory and the applicability to various scenarios. However, the current lateral planning methods can only meet parts of these requirements. In order to satisfy all the performance requirements above, a novel Potential Field (PF) based lateral planning method is proposed in this paper. Firstly, a PF model is built to describe the potential risk of the traffic entities, including the obstacles, road boundaries and lines. The potential fields of these traffic entities are determined by their properties and the traffic regulations. Secondly, the planning algorithm is presented, which comprises three modules: state prediction, state search and trajectory generation.