Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Driver Brake Parameters Analysis under Risk Scenarios with Pedalcyclist

2016-04-05
2016-01-1451
In China there are many mixed driving roads which cause a lot of safety problems between vehicles and pedalcyclists. Research on driver behavior under risk scenarios with pedalcyclist is relatively few. In this paper driver brake parameters under naturalistic driving are studied and pedalcyclists include bicyclist, tricyclist, electric bicyclist and motorcyclist. Brake reaction time and maximum brake jerk are used to evaluate driver brake reaction speed. Average deceleration is used to evaluate the effect of driver brake operation. Maximum deceleration is used to evaluate driver braking ability. Driver behaviors collected in China are classified and risk scenarios with pedalcyclist are obtained. Driver brake parameters are extracted and statistical characteristics of driver brake parameters are obtained. Influence factors are analyzed with univariate ANOVA and regression analysis.
Technical Paper

Naturalistic Driving Behavior Analysis under Typical Normal Cut-In Scenarios

2019-04-02
2019-01-0124
Cut-in scenarios are common and of potential risk in China but Advanced Driver Assistant System (ADAS) doesn’t work well under such scenarios. In order to improve the acceptance of ADAS, its reactions to Cut-in scenarios should meet driver’s driving habits and expectancy. Brake is considered as an express of risk and brake tendency in normal Cut-in situations needs more investigation. Under critical Cut-in scenarios, driver tends to brake hard to eliminate collision risk when cutting in vehicle right crossing lane. However, under less critical Cut-in scenarios, namely normal Cut-in scenarios, driver brakes in some cases and takes no brake maneuver in others. The time when driver initiated to brake was defined as key time. If driver had no brake maneuver, the time when cutting-in vehicle right crossed lane was defined as key time. This paper focuses on driver’s brake tendency at key time under normal Cut-in situations.
Technical Paper

Driver Behavior Classification under Cut-In Scenarios Using Support Vector Machine Based on Naturalistic Driving Data

2019-04-02
2019-01-0136
Cut-in scenario is common in traffic and has potential collision risk. Human driver can detect other vehicle’s cut-in intention and take appropriate maneuvers to reduce collision risk. However, autonomous driving systems don’t have as good performance as human driver. Hence a deeper understanding on driving behavior is necessary. How to make decisions like human driver is an important problem for automated vehicles. In this paper, a method is proposed to classify the dangerous cut-in situations and normal ones. Dangerous cases were extracted automatically from naturalistic driving database using specific detection criteria. Among those cases, 70 valid dangerous cut-in cases were selected manually. The largest deceleration of subject vehicle is over 4 m/s2. Besides, 249 normal cut-in cases were extracted by going through video data of 2000km traveled distance. In normal driving cases, subject vehicle may brake or keep accelerating and the largest deceleration was less than 3 m/s2.
Technical Paper

A Systematic Scenario Typology for Automated Vehicles Based on China-FOT

2018-04-03
2018-01-0039
To promote the development of automated vehicles (AVs), large scale of field operational tests (FOTs) were carried out around the world. Applications of naturalistic driving data should base on correlative scenarios. However, most of the existing scenario typologies, aiming at advanced driving assistance system (ADAS) and extracting discontinuous fragments from driving process, are not suitable for AVs, which need to complete continuous driving tasks. In this paper, a systematic scenario-typology consisting of four layers (from top to bottom: trip, cluster, segment and process) was first proposed. A trip refers to the whole duration from starting at initial parking space to parking at final one. The basic units ‘Process’, during which the vehicle fulfils only one driving task, are classified into parking process, long-, middle- and short-time-driving-processes. A segment consists of two neighboring long-time-driving processes and a middle or/and short one between them.
Technical Paper

Analysis of the Driver’s Breaking Response in the Safety Cut-in Scenario Based on Naturalistic Driving

2019-11-04
2019-01-5053
For the personification of automotive vehicle function performance under common traffic scenarios, analysis of human driver behavior is necessary. Based on China Field Operational Test (China-FOT) database of China Natural Driving Study project, this paper studies the driver's response in the common cut-in scenario. A total of 266 cut-in cases are selected by manual interception of driving recorder video. The relevant traffic environment characteristics are also extracted from video, including light conditions, road conditions, scale and lateral position of cut-in vehicle, etc. Dynamic information is decoded form CAN, such as speed, acceleration and so on. Then image processing results, such as relative speed and distance of cut-in and subject vehicles, are calculated. Statistical results based on above information show the response type and distribution of human driver: the behavior of keeping lane is 96.24%, in which the ratio of braking response is 51.13%.
Technical Paper

Study on Test Scenarios of Environment Perception System under Rear-End Collision Risk

2018-04-03
2018-01-1079
The foundation of both advanced driving assistance system(ADAS) and automated driving (AD) is an accurate environment perception system(EPS). However, evaluation and test method of EPS are seldom studied. In this paper, naturalistic driving environment was studied and test scenarios for EPS under rear-end collision risk were proposed accordingly. To describe driving environment, a new concept named environment perception element(EPE) was first proposed in this paper, which refers to all the objects that the EPS must perceive during driving. Typical environment perception elements include weather and light conditions, road features, road markings, traffic signs, traffic lights, other vehicles, pedal cyclists and pedestrians and others. Driving behaviors collected in Shanghai, China were classified and rear-end collision risk scenarios were obtained and described using EPEs. Probability distribution of EPEs was therefore obtained.
Technical Paper

Analysis under Vehicle-Pedalcyclist Risk Scenario Based on Comparison between Real Accident and Naturalistic Driving Data

2018-04-03
2018-01-1048
This paper constructs the Accident Crash Scenarios(ACSs) classification system based on the traffic accident data collected by the traffic management department in a Chinses city from 2013 to 2015. The classification system selects four influenced variables on the basis of Critical Driving Scenarios(CDSs) in Naturalistic Driving Data. The proportions of each variable are analyzed, and all ACSs are divided into 48 scenarios. The highest proportion of nine ACSs are extracted from all 10596 ACSs, and the result shows the ACSs involved Car-Pedalcyclist occupy the top four scenarios, and the scenarios involved intersection situations are worth attention. Pedalcyclists include bicyclists, motorcyclists, tri-cyclists and electric bicyclists. Multivariate Logistic Regression(MLR) analysis is then used to study the ACSs involved the type of Car-Pedalcyclist.
Technical Paper

Critical Driving Scenarios Extraction Optimization Method Based on China-FOT Naturalistic Driving Study Database

2018-08-07
2018-01-1628
Due to the differences in traffic situations and traffic safety laws, standards for extraction of critical driving scenarios (CDSs) vary from different countries and areas around the world. To maintain the characteristic variables under the Chinese typical CDSs, this paper uses the three-layer detection method to extract and detect CDSs in the Natural Driving Data from China-FOT project which executing under the real traffic situation in China. The first layer of detection is mainly based on the feature distributions which deviate from normal driving situations. These distributions associated with speed and longitudinal acceleration/lateral acceleration/yaw rate also quantify the critical levels classification.
Technical Paper

Driver Risk Perception Model under Critical Cut-In Scenarios

2018-08-07
2018-01-1626
In China Cut-in scenarios are quite common on both highway and urban road with heavy traffic. They have a potential risk of rear-end collision. When facing a cutting in vehicle, driver tends to brake in most case to reduce collision risk. The timing and dynamic characteristics of brake maneuver are indicators of driver subjective risk perception. Time to collision (TTC) and Time Headway (THW) demonstrate objective risk. This paper aims at building a model quantitatively revealing the relationship between drivers’ subjective risk perception and objective risk. A total of 66 valid critical Cut-in cases was extracted from China-FOT, which has a travel distance of about 130 thousand miles. It is found that under Cut-in scenarios, driver tended to brake when the cutting in vehicle right crossing line. This time point was defined as initial brake time. Brake strength and brake speed were taken to describe brake maneuver.
X