Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Research on the Fatigue Durability Performance of a SUV Rear Axle

2016-04-05
2016-01-0376
The performance of the rear axle plays an important role in the performance of vehicle, and its fatigue durability is an integral part in the vehicle development. Taking a SUV model as the research subject, a new methodology of multi-channel spindle coupled road simulator and fatigue simulation analysis for rear axle assembly was introduced in the paper, aiming to address the fatigue design and its verification for the rear axle in the development phase. Firstly, road loads in the proving ground was collected by arranging proper sensors. Secondly, physical iteration was performed on the multichannel spindle coupled road simulator by taking six component forces at the wheel hub as the target signals. Then, after the time waveform replication of the loads the durability test was conducted. Finally, the validated simulation model was successfully implemented to improve the fatigue life of the axle.
Technical Paper

Study on Power Ratio Between the Front Motor and Rear Motor of Distributed Drive Electric Vehicle Based on Energy Efficiency Optimization

2016-04-05
2016-01-1154
For distributed drive electric vehicles (DDEVs), the influence of the power ratio between the front and rear motors on the energy efficiency characteristics is investigated. The power-train systems of the DDEVs in this study are divided into two different power-train configurations. The first is with its front axle driven by wheel-side motors and the rear axle driven by in-wheel motors, and the second is with both the front and rear axles driven by in-wheel motors. The energy consumption simulation and analysis platform of the DDEV is built with Matlab/Simulink. The parameters of the key components are determined by the experiments to ensure the validity of the data used in simulation. At the same time, the vehicle’s average energy efficiency coefficient is defined to describe the energy efficiency characteristics of the power-train strictly. Besides, the control strategies for driving and braking of the DDEV based on energy efficiency optimization are presented.
Technical Paper

Design and Research of Micro EV Driven by In-Wheel Motors on Rear Axle

2016-09-18
2016-01-1950
As is known to all, the structure of the chassis has been greatly simplified as the application of in-wheel motor in electric vehicle (EV) and distributed control is allowed. The micro EV can alleviate traffic jams, reduce the demand for motor and battery capacity due to its small size and light weight and accordingly solve the problem that in-wheel motor is limited by inner space of the wheel hub. As a result, this type of micro EV is easier to be recognized by the market. In the micro EV above, two seats are side by side and the battery is placed in the middle of the chassis. Besides, in-wheel motors are mounted on the rear axle and only front axle retains traditional hydraulic braking system. Based on this driving/braking system, distribution of braking torque, system reliability and braking intensity is analyzed in this paper.
Technical Paper

Model-Based Pitch Control for Distributed Drive Electric Vehicle

2019-04-02
2019-01-0451
On the dual-motor electric vehicle, which is driven by two electric motors mounted on the front and rear axles respectively, longitudinal dynamic control and electro-dynamic braking can be achieved by controlling the torque of front and rear axle motors respectively. Suspension displacement is related to the wheel torque, thus the pitch of vehicle body can be influenced by changing the torque distribution ratio. The pitch of the body has a great influence on the vehicle comfort, which occurs mainly during acceleration and braking progress. Traditionally active suspension is adopted to control the pitch of body. Instead, in this paper an ideal torque distribution strategy is developed to limit the pitch during acceleration and braking progress. This paper first explores the relationship between the torque distribution and the body pitch through the real vehicle test, which reveals the feasibility of the vehicle comfort promotion by optimizing the torque distribution coefficient.
Journal Article

The Effect of Fixture on the Testing Accuracy in the Spindle-Coupled Road Simulation Test

2018-04-03
2018-01-0130
The action of load on the component is crucial to evaluate the performance of durability. Another factor that affects fatigue life is the boundary conditions of the test specimen being tested by introducing unrealistic loads on the component of interest. The physical test is widely conducted in the laboratory. The fixture provides additional constraints on the test specimen as well as reaction forces to balance the test system [1]. The characteristics of the fixture involved in the test is important to analyze and assess the test results [2]. The impact of the reaction force of the fixture on the spindle-coupled axle road simulation test is presented in this article. A simplified 7-DoF (degrees of freedom) model is introduced to demonstrate the dynamic behavior of the vehicle. The influence on the internal load by the fixture has been analyzed. Followed by a more detailed MBS (multibodysystem) model to give a thorough understanding of the phenomenon.
X