Refine Your Search

Topic

Search Results

Technical Paper

An Anti-Lock Braking Control Strategy for 4WD Electric Vehicle Based on Variable Structure Control

2013-04-08
2013-01-0717
Based on the four-wheel-drive electric vehicle (4WD EV), a variable structure control (VSC) strategy is designed in this paper for the anti-lock braking control. With nonpeak friction coefficient as target, sign judgment method of switch function in this VSC strategy is improved and a new control algorithm is proposed. The improved VSC strategy is made robust to the parameters of the algorithm and verified by the computer simulation as well as the hard-in-loop test. The results show that the slip rate can be controlled to a point in the stable area near the optimal slip ratio and the control strategy can effectively realize the anti-lock braking control.
Technical Paper

Instantaneous Optimization Energy Management for Extended-Range Electric Vehicle Based on Minimum Loss Power Algorithm

2013-09-08
2013-24-0073
Most of the existing energy management strategies for Extended-Range Electric Vehicles (E-REVs) are heuristic, which restricts coordination between the battery and the Range Extender. This paper presents an instantaneous optimization energy management strategy based on the Minimum Loss Power Algorithm (MLPA) for a fuel cell E-REV. An instantaneous loss power function of power train system is constructed by considering the charge and discharge efficiency of the battery, together with the working efficiency of the fuel cell Range Extender. The battery working mode and operating points of the fuel cell Range Extender are decided by an instantaneous optimization module (an artificial neural network) that aims to minimize the loss power function at each time step.
Technical Paper

Temperature Difference Control Strategy and Flow Field Uniformity Analysis of Ni-Mh Power Battery Package

2012-09-24
2012-01-2018
The nonuniformity property of the temperature field distribution will not only affect on the battery charging and discharging performance but also its lifetime. In this paper the elementary structural design is implemented for Ni-Mh battery package and the corresponding test platform is constructed from the point of view of temperature difference control strategy, the test results show that the present structural design schemes can effectively restrain temperature difference enlargement among the battery stacks. Through the application of adopting the flow field uniformity method to control temperature difference, and flow field optimization inside the battery package, it is found that the flow field velocity change quantity ΔV is gradually reduced as the increase of the afflux hood angle Ak and air vent width Da, and the difference of battery temperature is relatively lower, which denoting that the corresponding relationship can be created based on test data.
Technical Paper

Effect of Electrode Tabs Configuration on the Electric-Thermal Behavior of a Li-Ion Battery

2014-04-01
2014-01-1862
This paper presents a three-dimensional electrochemical electrode plate pair model to study the effect of the electrode tabs configuration. Understanding the distribution of current density, potential and heat generation rate is critical for designing li-ion batteries and conducting effective design optimization studies. We developed several electrode plate pair models which were different in position and size of tabs. Results showed the influence and comparison of different configuration on the distribution of current density, potential density and heat generation rate at different discharge process. The distribution was predicted as a function of tabs. It can provide a theoretical basis for improving battery thermal performance and cooling system design.
Journal Article

Design and Thermal Analysis of a Passive Thermal Management System Using Composite Phase Change Material for Rectangular Power Batteries

2015-04-14
2015-01-0254
A passive thermal management system (TMS) using composite phase change material (PCM) for large-capacity, rectangular lithium-ion batteries is designed. A battery module consisting of six Li-ion cells connected in series was investigated as a basic unit. The passive TMS for the module has three configurations according to the contact area between cells and the composite PCM, i.e., surrounding, front-contacted and side-contacted schemes. Firstly, heat generation rate of the battery cell was calculated using the Bernardi equation based on experimentally measured heat source terms (i.e. the internal resistance and the entropy coefficient). Physical and thermal properties such as density, phase change temperature, latent heat and thermal conductivity of the composite PCM were also obtained by experimental methods. Thereafter, thermal response of the battery modules with the three TMS configurations was simulated using 3D finite element analysis (FEA) modeling in ANSYS Fluent.
Journal Article

Estimation on the Location of Peak Pressure at Quick Start of HEV Engine Employing Ion Sensing Technology

2008-06-23
2008-01-1566
In this paper an estimation method on location of peak pressure (LPP) employing flame ionization measurement, with the spark plug as a sensor, was discussed to achieve combustion parameters estimation at quick start of HEV engines. Through the cycle-based ion signal analysis, the location of peak pressure can be extracted in individual cylinder for the optimization of engine quick start control of HEV engine. A series of quick start processes with different cranking speed and engine coolant temperature are tested for establishing the relationship between the ion signals and the combustion parameters. An Artificial Neural Network (ANN) algorithm is used in this study for estimating these two combustion parameters. The experiment results show that the location of peak pressure can be well established by this method.
Technical Paper

Characteristics of Three-way Catalyst during Quickly Start-up Process in a PFI Engine for HEV Application

2009-04-20
2009-01-1325
The characteristics of three-way-catalyst during engine start process were investigated based on a simulated start/stop test system for HEV application. Although the catalyst has already reached its light-off temperature, the conversion efficiency is poor during engine start process due to the deviation of lambda from stoichiometric. The high concentration hydrocarbon emission spike can be stored by catalyst substrate temporarily, then it is released. This dynamic process decreases the conversion efficiency for the following exhaust hydrocarbon emission. When the initial temperature of catalyst substrate before engine start increased from 150°C to 400°C, the conversion efficiency for both the hydrocarbon and NO are increased.
Technical Paper

Design and Research of Micro EV Driven by In-Wheel Motors on Rear Axle

2016-09-18
2016-01-1950
As is known to all, the structure of the chassis has been greatly simplified as the application of in-wheel motor in electric vehicle (EV) and distributed control is allowed. The micro EV can alleviate traffic jams, reduce the demand for motor and battery capacity due to its small size and light weight and accordingly solve the problem that in-wheel motor is limited by inner space of the wheel hub. As a result, this type of micro EV is easier to be recognized by the market. In the micro EV above, two seats are side by side and the battery is placed in the middle of the chassis. Besides, in-wheel motors are mounted on the rear axle and only front axle retains traditional hydraulic braking system. Based on this driving/braking system, distribution of braking torque, system reliability and braking intensity is analyzed in this paper.
Technical Paper

Comparison of Different Energy Storage Systems for Range-Extended Electric Urban Bus

2016-09-27
2016-01-8093
Recent years, electric vehicles (EVs) have been widely used as urban transit buses in China, but high costs and a dwindling driving distance caused mainly by relatively frequent usage rate have put the electric bus in a difficult position. Range-extended electric bus (REEbus) is taken as an ideal transitional powertrain configuration, but its efficiency is not so high. Besides, with less batteries to endure more frequently charging and discharging, the lifecycle of battery pack can also be shorten. Aiming at it, range-extended electric powertrains with diverse energy storage systems (ESSs) and proper auxiliary power unit (APU) control strategies are matched and compared to find most proper ESS configuration for REEbus through simulation, which is based on a 12 meter-long urban bus.
Technical Paper

Thermal Management of Power Batteries for Electric Vehicles Using Phase Change Materials: A Review

2016-04-05
2016-01-1204
As one of the most crucial components in electric vehicles, power batteries generate abundant heat during charging and discharging processes. Thermal management system (TMS), which is designed to keep the battery cells within an optimum temperature range and to maintain an even temperature distribution from cell to cell, is vital for the high efficiency, long calendar life and reliable safety of these power batteries. With the desirable features of low system complexity, light weight, high energy efficiency and good battery thermal uniformity, thermal management using composite phase change materials (PCMs) has drawn great attention in the past fifteen years. In the hope of supplying helpful guidelines for the design of the PCM-based TMSs, this work begins with the summarization of the most commonly applied heat transfer enhancement methods (i.e., the use of thermally conductive particles, metal fin, expanded graphite matrix and metal foam) for PCMs by different researchers.
Technical Paper

Impedance Modeling and Aging Research of the Lithium-Ion Batteries Using the EIS Technique

2019-04-02
2019-01-0596
As the core component of electric vehicles (EVs), batteries attach increasingly general attention along with the rapid expansion of electric vehicle market. Battery performance effect directly the safety and reliability of the EVs, so its managing technologies are more and more crucial. Among them, the methods of estimating the state of health (SoH) and predicting remaining useful life become the focuses, which are essential to ensure their dependability and optimum performance over time. This paper mainly focuses on impedance modeling and aging research (aging diagnosis and life prediction) of lithium-ion batteries. Electrochemical impedance spectroscopy (EIS) technique is used to obtain impedance characteristic of batteries. On the one hand, equivalent circuit modeling (ECM) can be motivated by EIS, with the goal to fit measured impedance data using circuit elements.
Technical Paper

Genetic Algorithm-Based Parameter Optimization of Energy Management Strategy and Its Analysis for Fuel Cell Hybrid Electric Vehicles

2019-04-02
2019-01-0358
Fuel cell hybrid electric vehicles (FCHEVs) composed of fuel cells and batteries can improve the dynamic response and durability of vehicle propulsion. In addition, braking energy can be recovered by batteries. The energy management strategy (EMS) for distributing the requested power through different types of energy sources plays an important role in FCHEVs. Reasonable power split not only improves vehicle performance but also enhances fuel economy. In this paper, considering the power tracking control strategy which is widely adopted in Advanced Vehicle Simulator (ADVISOR), a constrained nonlinear programming parameter optimization model is established for minimizing fuel consumption. The principal parameters of power tracking control strategy are set as the optimized variables, with the dynamic performance index of FCHEVs being defined as the constraint condition. Then, the genetic algorithm (GA) is applied in the control strategy design for solving the optimization problem.
Technical Paper

Experiment Studies of Charging Strategy for Lithium-Ion Batteries

2019-04-02
2019-01-0792
Regarding the lithium-ion batteries used in the electric vehicle, charging time and charging efficiency are the concern of the public. In this paper, a lot of experiments were conducted to investigate the common charging strategies, including the CC-CV (constant current-constant voltage) charging and the pulse current charging, for the LiFePO4 batteries, which are still widely used in commercial vehicles. Charging temperature and the charging current in the CC phase are the main influence factors to be studied for the CC-CV charging strategy, and the contribution of the CC phase and CV phase to the whole charging is analyzed from three aspects, including the time percent, charging energy efficiency and the capacity of battery at different temperatures and charging current.
Technical Paper

Potential Risk Assessment Algorithm in Car Following

2019-04-02
2019-01-1024
In this paper, a potential risk assessment algorithm is proposed. The obvious risk assessment measure is defined as time to collision (TTC), whereas the potential risk measure is defined as the time before the host vehicle has to decelerate to avoid a rear-end collision assuming that the target vehicle brakes, i.e. time margin (TM). The driving behavior of the human driver in the dangerous car following scenario is studied by using the naturalistic driving data collected by video drive record (VDR), which include 78 real dangerous car following dangerous scenarios. A potential risk assessment algorithm was constructed using TM and the dangerous car following scenarios. Firstly, the braking starting time during dangerous car following is identified. Next, the TM at brake starting time of the 78 dangerous car following scenarios is analyzed. In the last, the thresholds of the potential risk levels are achieved.
Journal Article

Longitudinal Vibration Analysis of Electric Wheel System in Starting Condition

2017-03-28
2017-01-1126
Due to coupling of in-wheel motor and wheel/tire, the electric wheel system of in-wheel motor driven vehicle is different from tire suspension system of internal combustion engine vehicle both in the excitation source and structural dynamics. Therefore emerging dynamic issues of electric wheel arouse attention. Longitudinal vibration problem of electric wheel system in starting condition is studied in this paper. Vector control system of permanent magnet synchronous hub motor considering dead-time effect of the inverter is primarily built. Then coupled longitudinal-torsional vibration model of electric wheel system is established based on rigid ring model and dynamic tire/road interface. Inherent characteristics of this model are further analyzed. The vibration responses of electric wheel system are simulated by combining electromagnetic torque and the vibration model. The results indicate that abrupt changes of driving torque will cause transient vibration of electric wheel system.
Technical Paper

Parameter Identification of Battery Pack Considering Cell Inconsistency

2017-03-28
2017-01-1214
Lithium-ion batteries have been applied in the new energy vehicles more and more widely. The inconsistency of battery cells imposes a lot of difficulties in parameter and state estimations. This paper proposes a new algorithm which can online identify the parameters of each individual battery cell accurately with limited increase of computational cost. An equivalent circuit battery model is founded and based on the RLS (recursive least squares) algorithm, an optimization algorithm with the construction of weight vectors is proposed which can identify the parameters of lithium battery pack considering inconsistency of single battery cell. Firstly, the average value of the parameters of the battery pack is identified with the traditional RLS algorithm. Then the ratios between the parameters of each battery cell can be deduced from the mathematical model of battery. These ratios are used to determine the weight vector of each parameter of individual battery cells.
Technical Paper

Experimental Investigation of AC Pulse Heating Method for NMC Lithium-Ion Battery at Subzero Temperatures

2017-03-28
2017-01-1217
An alternating current (AC) heating method for a NMC lithium-ion battery with 8Ah capacity is proposed. The effects of excitation frequency, current amplitudes, and voltage limit condition on the temperature evolution are investigated experimentally. Current amplitudes are set to 24A(3C), 40(5C), and 64A(8C), and excitation frequencies are set to 300Hz, 100Hz, 30Hz, 10Hz, 5Hz, and 1Hz respectively. The voltage limitations are necessary to protect cells from overcharge and over-discharge. Therefore the voltage limit condition (4.2V/2.75V, 4.3V/2.65V, and 4.4V/2.55V) are also considered in depth to verify the feasibility of the AC heating method. The temperature rises prominently as the current increases, and the decrement of frequencies also lead to the obvious growth of battery temperature. The battery obtain the maximum temperature rise at 64A and 1Hz, which takes 1800s to heat up the battery from -25°C to 18°C.
Technical Paper

A Study of Parameter Inconsistency Evolution Pattern in Parallel-Connected Battery Modules

2017-03-28
2017-01-1194
Parallel-connected modules have been widely used in battery packs for electric vehicles nowadays. Unlike series-connected modules, the direct state inconsistency caused by parameter inconsistency in parallel modules is current and temperature non-uniformity, thus resulting in the inconsistency in the speed of aging among cells. Consequently, the evolution pattern of parameter inconsistency is different from that of series-connected modules. Since it’s practically impossible to monitor each cell’s current and temperature information in battery packs, considering cost and energy efficiency, it’s necessary to study how the parameter inconsistency evolves in parallel modules considering the initial parameter distribution, topology design and working condition. In this study, we assigned cells of 18650 format into several groups regarding the degree of capacity and resistance inconsistency. Then all groups are cycled under different environmental temperature and current profile.
Technical Paper

Modeling of Open Circuit Voltage Hysteresis for LiFePO4 Batteries

2015-04-14
2015-01-1180
This paper aims at accurately modeling the nonlinear hysteretic relationship between open circuit voltage (OCV) and state of charge (SOC) for LiFePO4 batteries. The OCV-SOC hysteresis model is based on the discrete Preisach approach which divides the Preisach triangle into finite squares. To determine the weight of each square, a linear function system is constructed including a series of linear equations formulated at every sample time. This function system can be solved by computer offline. When applying this approach online, the calculated square weight vector is pre-stored in advance. Then through multiple operations with hysteresis state vector of squares updated online at every sampling time, the SOC considering the influence of OCV-SOC hysteresis is predicted.
Technical Paper

A Lithium-Ion Battery Optimized Equivalent Circuit Model based on Electrochemical Impedance Spectroscopy

2015-04-14
2015-01-1191
An electrochemical impedance spectroscopy battery model based on the porous electrode theory is used in the paper, which can comprehensively depict the internal state of the battery. The effect of battery key parameters (the radius of particle, electrochemical reaction rate constant, solid/electrolyte diffusion coefficient, conductivity) to the simulated impedance spectroscopy are discussed. Based on the EIS analysis, a lithium-ion battery optimized equivalent circuit model is built. The parameters in the equivalent circuit model have more clear physical meaning. The reliability of the optimized equivalent circuit model is verified by compared the model and experiments. The relationship between the external condition and internal resistance could be studied according to the optimized equivalent circuit model. Thus the internal process of the power battery is better understood.
X