Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Optimization and Implementation of Three-Phase PMSM Current Harmonic Decomposition Technique

2019-04-02
2019-01-0604
With the development of electric vehicle (EV), permanent magnet synchronous motor (PMSM) has received more and more attention. PMSM torque ripple suppression is one of the core technologies of PMSM control. Current harmonic injection method is a commonly used torque ripple suppression method. In order to accurately control the injecting current harmonics, it is necessary to quickly and efficiently decompose the three-phase PMSM current harmonics first. In this paper, an existing instantaneous harmonic decomposition method based on multiple reference coordinates is adopted. First, the causes of the analysis error of the harmonic decomposition technique are analyzed which are divided into internal factors (e.g. analysis errors generated during the discretization of continuous functions) and external factors (e.g. sampling errors). Analysis errors will directly affect the decomposition result.
Technical Paper

Impedance Modeling and Aging Research of the Lithium-Ion Batteries Using the EIS Technique

2019-04-02
2019-01-0596
As the core component of electric vehicles (EVs), batteries attach increasingly general attention along with the rapid expansion of electric vehicle market. Battery performance effect directly the safety and reliability of the EVs, so its managing technologies are more and more crucial. Among them, the methods of estimating the state of health (SoH) and predicting remaining useful life become the focuses, which are essential to ensure their dependability and optimum performance over time. This paper mainly focuses on impedance modeling and aging research (aging diagnosis and life prediction) of lithium-ion batteries. Electrochemical impedance spectroscopy (EIS) technique is used to obtain impedance characteristic of batteries. On the one hand, equivalent circuit modeling (ECM) can be motivated by EIS, with the goal to fit measured impedance data using circuit elements.
Technical Paper

Tracking of Extended Objects with Multiple Three-Dimensional High-Resolution Automotive Millimeter Wave Radar

2019-04-02
2019-01-0122
Estimating the motion state of peripheral targets is a very important part in the environment perception of intelligent vehicles. The accurate estimation of the motion state of the peripheral targets can provide more information for the intelligent vehicle planning module which means the intelligent vehicle is able to anticipate hazards ahead of time. To get the motion state of the target accurately, the target’s range, velocity, orientation angle and yaw rate need to be estimated. Three-dimensional high-resolution automotive millimeter wave radar can measure radial range, radial velocity, azimuth angle and elevation angle about multiple reflections of an extended target. Thus, the three-dimensional range information and three-dimensional velocity information can be obtained. With multiple three-dimensional high-resolution automotive millimeter-wave radar, it is possible to measure information in various directions of a target.
Technical Paper

Naturalistic Driving Behavior Analysis under Typical Normal Cut-In Scenarios

2019-04-02
2019-01-0124
Cut-in scenarios are common and of potential risk in China but Advanced Driver Assistant System (ADAS) doesn’t work well under such scenarios. In order to improve the acceptance of ADAS, its reactions to Cut-in scenarios should meet driver’s driving habits and expectancy. Brake is considered as an express of risk and brake tendency in normal Cut-in situations needs more investigation. Under critical Cut-in scenarios, driver tends to brake hard to eliminate collision risk when cutting in vehicle right crossing lane. However, under less critical Cut-in scenarios, namely normal Cut-in scenarios, driver brakes in some cases and takes no brake maneuver in others. The time when driver initiated to brake was defined as key time. If driver had no brake maneuver, the time when cutting-in vehicle right crossed lane was defined as key time. This paper focuses on driver’s brake tendency at key time under normal Cut-in situations.
Technical Paper

Driver Behavior Classification under Cut-In Scenarios Using Support Vector Machine Based on Naturalistic Driving Data

2019-04-02
2019-01-0136
Cut-in scenario is common in traffic and has potential collision risk. Human driver can detect other vehicle’s cut-in intention and take appropriate maneuvers to reduce collision risk. However, autonomous driving systems don’t have as good performance as human driver. Hence a deeper understanding on driving behavior is necessary. How to make decisions like human driver is an important problem for automated vehicles. In this paper, a method is proposed to classify the dangerous cut-in situations and normal ones. Dangerous cases were extracted automatically from naturalistic driving database using specific detection criteria. Among those cases, 70 valid dangerous cut-in cases were selected manually. The largest deceleration of subject vehicle is over 4 m/s2. Besides, 249 normal cut-in cases were extracted by going through video data of 2000km traveled distance. In normal driving cases, subject vehicle may brake or keep accelerating and the largest deceleration was less than 3 m/s2.
Technical Paper

Model-Based Pitch Control for Distributed Drive Electric Vehicle

2019-04-02
2019-01-0451
On the dual-motor electric vehicle, which is driven by two electric motors mounted on the front and rear axles respectively, longitudinal dynamic control and electro-dynamic braking can be achieved by controlling the torque of front and rear axle motors respectively. Suspension displacement is related to the wheel torque, thus the pitch of vehicle body can be influenced by changing the torque distribution ratio. The pitch of the body has a great influence on the vehicle comfort, which occurs mainly during acceleration and braking progress. Traditionally active suspension is adopted to control the pitch of body. Instead, in this paper an ideal torque distribution strategy is developed to limit the pitch during acceleration and braking progress. This paper first explores the relationship between the torque distribution and the body pitch through the real vehicle test, which reveals the feasibility of the vehicle comfort promotion by optimizing the torque distribution coefficient.
Technical Paper

Pressure Estimation Algorithms in Decoupled Electro-Hydraulic Brake System Considering the Friction and Pressure-Position Relationship

2019-04-02
2019-01-0438
This paper presents several pressure estimation algorithms (PEAs) for a decoupled electro-hydraulic brake system (EHB), which is driven by an electric motor + reduction gear. Most of the pressure control solutions are based on standard pressure-based feedback control, requiring a pressure signal. Although the pressure sensor can produce the pressure feedback signal, it will increase cost and enlarge installation space. The rotation angle of electric motor is available by the built-in sensor, so the pressure can be estimated by using the rotation angle. Considering the typical nonlinearities (i.e. friction, pressure-position relationship) and uncertainties (i.e. disturbance caused by friction model), the estimation-oriented model is established. The LuGre model is selected to describe the friction, and the pressure-position relationship is fitted by a quadratic polynomial.
Technical Paper

Numerical Analysis and Optimization Design of a Centrifugal Compressor’s Volute for PEM Fuel Cell Vehicle

2019-04-02
2019-01-0376
Centrifugal compressors used in polymer electrolyte membrane fuel cell systems are different from turbochargers in internal combustion engines, because they are required to work at high speed, low mass flow rate, narrow range which nears surge boundaries. In order to meet these requirements, a centrifugal compressor’s volute is designed, analyzed and optimized on its cross-section area, shape of volute tongue and tapered angle of exit. The numerical results show that surge boundary of the compressor is influenced by spiral area significantly and that volute tongue has a major impact on aerodynamic performances at high mass flow rates.
Journal Article

Online Flooding and Dehydration Diagnosis for PEM Fuel Cell Stacks via Generalized Residual Multiple Model Adaptive Estimation-Based Methodology

2019-04-02
2019-01-0373
For proton exchange membrane fuel cell (PEMFC) stack, critical issues such as flooding and dehydration, are caused by improper water management. With respect to the water management failure, PEMFC stack outputs power and efficiency decreased. Therefore, proper water management with diagnosis contributes to the reliability and durability. Existing researches establish Electrochemical Impedance Spectroscopy (EIS) measurement to detect and identify different faults, whereas the sophistication, overwhelmed computational consumption of EIS and unaffordable dedicated instrumentation make it’s unsuitable for commercial application. Therefore, EIS is not considered to be a viable solution to online and real-time diagnostic scheme. In this paper, an innovative method based on EIS, is further developed to identify some critical PEMFC fault conditions online, wherein generalized residual multiple model adaptive estimation (GRMMAE) methodology is applied.
Technical Paper

DC/DC Modeling and Current Harmonic Analysis in Fuel Cell Hybrid Power System

2019-04-02
2019-01-0375
Fuel cells directly convert the energy stored in hydrogen into electrical energy through an electrochemical reaction, and the only reaction product is water, which can improve the energy efficiency and reduce the pollution caused by fossil fuels. The fuel cell hybrid power system used in vehicles usually consists of a fuel cell stack and a power battery module, and the DC/DC converter is the key component to connect them together. The current ripples caused by the system have been confirmed to have detrimental effects on the fuel cell’s reliability and lifespan. In addition, it is one of the key factors that reduce the system efficiency. So, it is necessary to analyze the current ripple in the system and maintain it at a low level. In this paper, a brief review on the different kinds of converters used in vehicles has been made. Then, with the help of MATLAB/SIMULINK, a simulation model of the hybrid power system based on 4-phase interleaved parallel topology is established.
Journal Article

A Lattice Boltzmann Simulation of Gas Purge in Flow Channel with Real GDL Surface Characteristics for Proton Exchange Membrane Fuel Cell

2019-04-02
2019-01-0389
Gas purge is considered as an essential shutdown process for a PEMFC (Proton Exchange Membrane Fuel Cell), especially in subfreezing temperature. The water flooding phenomenon inside fuel cell flow channel have a marked impact on performance in normal operating condition. In addition, the residual water freezes in the subzero temperature, thus blocking the mass transfer from flow channel to porous media. Therefore, the gas purge course is of primary importance for improvement of performance and durability. The water droplet residing in the flow channel can be purged out due to shearing force of gas. In fact, the flow channel is not completely flat due to surface roughness of gas diffusion layer (GDL), meaning the water droplet may climb over obstacles. Moreover, the water droplet may block the flow channel and then be sheared into films on the surface of GDL.
Technical Paper

Voltage and Voltage Consistency Attenuation Law of the Fuel Cell Stack Based on the Durability Cycle Condition

2019-04-02
2019-01-0386
Based on the durability cycle test of fuel cell stack and the characteristics of cyclic working conditions, this paper defines the characteristic current point and studies the attenuation rule of the fuel cell stack voltage over time under the characteristic current point. The results show that the voltage of the fuel cell stack appears to be linear downward under the characteristic current point. and the voltage attenuation rate of the fuel cell stack increases quadratically with the increase of the current density in addition to the open-circuit voltage point. Then the coefficient of variation is introduced in statistics as the index to characterize the voltage consistency attenuation of the fuel cell stack, and its variation rule is explored. The results show that the voltage consistency of vehicle fuel cell stack decreases seriously with the increase of running time under the condition of durable cycling.
Technical Paper

Genetic Algorithm-Based Parameter Optimization of Energy Management Strategy and Its Analysis for Fuel Cell Hybrid Electric Vehicles

2019-04-02
2019-01-0358
Fuel cell hybrid electric vehicles (FCHEVs) composed of fuel cells and batteries can improve the dynamic response and durability of vehicle propulsion. In addition, braking energy can be recovered by batteries. The energy management strategy (EMS) for distributing the requested power through different types of energy sources plays an important role in FCHEVs. Reasonable power split not only improves vehicle performance but also enhances fuel economy. In this paper, considering the power tracking control strategy which is widely adopted in Advanced Vehicle Simulator (ADVISOR), a constrained nonlinear programming parameter optimization model is established for minimizing fuel consumption. The principal parameters of power tracking control strategy are set as the optimized variables, with the dynamic performance index of FCHEVs being defined as the constraint condition. Then, the genetic algorithm (GA) is applied in the control strategy design for solving the optimization problem.
Technical Paper

Potential Risk Assessment Algorithm in Car Following

2019-04-02
2019-01-1024
In this paper, a potential risk assessment algorithm is proposed. The obvious risk assessment measure is defined as time to collision (TTC), whereas the potential risk measure is defined as the time before the host vehicle has to decelerate to avoid a rear-end collision assuming that the target vehicle brakes, i.e. time margin (TM). The driving behavior of the human driver in the dangerous car following scenario is studied by using the naturalistic driving data collected by video drive record (VDR), which include 78 real dangerous car following dangerous scenarios. A potential risk assessment algorithm was constructed using TM and the dangerous car following scenarios. Firstly, the braking starting time during dangerous car following is identified. Next, the TM at brake starting time of the 78 dangerous car following scenarios is analyzed. In the last, the thresholds of the potential risk levels are achieved.
Technical Paper

Robust Multi-Lane Detection and Tracking in Temporal-Spatial Based on Particle Filtering

2019-04-02
2019-01-0885
The camera-based advanced driver assistance systems (ADAS) like lane departure warning system (LDWS) and lane keeping assist (LKA) can make vehicles safer and driving easier. Lane detection is indispensable for these lane-based systems for achieving vehicle local localization and behavior prediction. Since the vision is vulnerable to the variable environment conditions such as bad weather, occlusions and illumination, the robustness is important. In this paper, a robust algorithm for detecting and tracking multiple lanes with arbitrary shape is proposed. We extend the previously lane detection and tracking process from the space domain to the temporal-spatial domain by using a more robust and general multi-lane model. First, new slice images containing temporal information are generated from image sequences. Instead of binarization process, we use a more general detector for extracting the lane marker candidates with prior knowledge to generate the binary slice image.
Technical Paper

Parameter Identification of Battery Pack Considering Cell Inconsistency

2017-03-28
2017-01-1214
Lithium-ion batteries have been applied in the new energy vehicles more and more widely. The inconsistency of battery cells imposes a lot of difficulties in parameter and state estimations. This paper proposes a new algorithm which can online identify the parameters of each individual battery cell accurately with limited increase of computational cost. An equivalent circuit battery model is founded and based on the RLS (recursive least squares) algorithm, an optimization algorithm with the construction of weight vectors is proposed which can identify the parameters of lithium battery pack considering inconsistency of single battery cell. Firstly, the average value of the parameters of the battery pack is identified with the traditional RLS algorithm. Then the ratios between the parameters of each battery cell can be deduced from the mathematical model of battery. These ratios are used to determine the weight vector of each parameter of individual battery cells.
Technical Paper

Experimental Investigation of AC Pulse Heating Method for NMC Lithium-Ion Battery at Subzero Temperatures

2017-03-28
2017-01-1217
An alternating current (AC) heating method for a NMC lithium-ion battery with 8Ah capacity is proposed. The effects of excitation frequency, current amplitudes, and voltage limit condition on the temperature evolution are investigated experimentally. Current amplitudes are set to 24A(3C), 40(5C), and 64A(8C), and excitation frequencies are set to 300Hz, 100Hz, 30Hz, 10Hz, 5Hz, and 1Hz respectively. The voltage limitations are necessary to protect cells from overcharge and over-discharge. Therefore the voltage limit condition (4.2V/2.75V, 4.3V/2.65V, and 4.4V/2.55V) are also considered in depth to verify the feasibility of the AC heating method. The temperature rises prominently as the current increases, and the decrement of frequencies also lead to the obvious growth of battery temperature. The battery obtain the maximum temperature rise at 64A and 1Hz, which takes 1800s to heat up the battery from -25°C to 18°C.
Technical Paper

A Study of Parameter Inconsistency Evolution Pattern in Parallel-Connected Battery Modules

2017-03-28
2017-01-1194
Parallel-connected modules have been widely used in battery packs for electric vehicles nowadays. Unlike series-connected modules, the direct state inconsistency caused by parameter inconsistency in parallel modules is current and temperature non-uniformity, thus resulting in the inconsistency in the speed of aging among cells. Consequently, the evolution pattern of parameter inconsistency is different from that of series-connected modules. Since it’s practically impossible to monitor each cell’s current and temperature information in battery packs, considering cost and energy efficiency, it’s necessary to study how the parameter inconsistency evolves in parallel modules considering the initial parameter distribution, topology design and working condition. In this study, we assigned cells of 18650 format into several groups regarding the degree of capacity and resistance inconsistency. Then all groups are cycled under different environmental temperature and current profile.
Technical Paper

Functional Safety and Secure CAN in Motor Control System Design for Electric Vehicles

2017-03-28
2017-01-1255
Permanent magnet synchronous motors (PMSM) are widely used in the electric vehicles for their high power density and high energy efficiency. And the motor control system for electric vehicles is one of the most critical safety related systems in electric vehicles, because potential failures of this system can lead to serious harm to humans’ body, so normally a high automotive safety integrity level (ASIL) will be assigned to this system. In this paper, an ASIL-C motor control system based on a multicore microcontroller is presented. At the same time, due to the increasing number of connectivity on the vehicle, secure onboard communication conformed to the AUTOSAR standard is also implemented in the system to prevent external attacks.
Technical Paper

Numerical Investigation of Jet-Wake and Secondary Flows in a Hydrodynamic Torque Converter

2017-03-28
2017-01-1335
Jet-wake flow and secondary flows are undesirable in torque converters as they are responsible for flow losses and flow nonuniformity; that is, jet-wake flow and secondary flows negatively affect the torque converter performance. Therefore, it is very important to investigate and minimize the undesirable flows to decrease flow losses in torque converter. However, the existing studies are limited to employ geometry design parameter modifications rather than focusing on the actual causes and intrinsic physical mechanism that generate the flows to reduce the flow losses. In this paper, Calculation model of a torque converter is presented first and a three dimensional CFD code was used to simulate the internal flow field of a torque converter. The simulation results coincide with experimental measurements, which verifies the validity of the method. Based on flow field calculation results, the internal flow field of impeller, turbine and stator were analyzed, respectively.
X