Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Effect of Electrode Tabs Configuration on the Electric-Thermal Behavior of a Li-Ion Battery

2014-04-01
2014-01-1862
This paper presents a three-dimensional electrochemical electrode plate pair model to study the effect of the electrode tabs configuration. Understanding the distribution of current density, potential and heat generation rate is critical for designing li-ion batteries and conducting effective design optimization studies. We developed several electrode plate pair models which were different in position and size of tabs. Results showed the influence and comparison of different configuration on the distribution of current density, potential density and heat generation rate at different discharge process. The distribution was predicted as a function of tabs. It can provide a theoretical basis for improving battery thermal performance and cooling system design.
Journal Article

Design and Thermal Analysis of a Passive Thermal Management System Using Composite Phase Change Material for Rectangular Power Batteries

2015-04-14
2015-01-0254
A passive thermal management system (TMS) using composite phase change material (PCM) for large-capacity, rectangular lithium-ion batteries is designed. A battery module consisting of six Li-ion cells connected in series was investigated as a basic unit. The passive TMS for the module has three configurations according to the contact area between cells and the composite PCM, i.e., surrounding, front-contacted and side-contacted schemes. Firstly, heat generation rate of the battery cell was calculated using the Bernardi equation based on experimentally measured heat source terms (i.e. the internal resistance and the entropy coefficient). Physical and thermal properties such as density, phase change temperature, latent heat and thermal conductivity of the composite PCM were also obtained by experimental methods. Thereafter, thermal response of the battery modules with the three TMS configurations was simulated using 3D finite element analysis (FEA) modeling in ANSYS Fluent.
Technical Paper

Impedance Modeling and Aging Research of the Lithium-Ion Batteries Using the EIS Technique

2019-04-02
2019-01-0596
As the core component of electric vehicles (EVs), batteries attach increasingly general attention along with the rapid expansion of electric vehicle market. Battery performance effect directly the safety and reliability of the EVs, so its managing technologies are more and more crucial. Among them, the methods of estimating the state of health (SoH) and predicting remaining useful life become the focuses, which are essential to ensure their dependability and optimum performance over time. This paper mainly focuses on impedance modeling and aging research (aging diagnosis and life prediction) of lithium-ion batteries. Electrochemical impedance spectroscopy (EIS) technique is used to obtain impedance characteristic of batteries. On the one hand, equivalent circuit modeling (ECM) can be motivated by EIS, with the goal to fit measured impedance data using circuit elements.
Technical Paper

Experiment Studies of Charging Strategy for Lithium-Ion Batteries

2019-04-02
2019-01-0792
Regarding the lithium-ion batteries used in the electric vehicle, charging time and charging efficiency are the concern of the public. In this paper, a lot of experiments were conducted to investigate the common charging strategies, including the CC-CV (constant current-constant voltage) charging and the pulse current charging, for the LiFePO4 batteries, which are still widely used in commercial vehicles. Charging temperature and the charging current in the CC phase are the main influence factors to be studied for the CC-CV charging strategy, and the contribution of the CC phase and CV phase to the whole charging is analyzed from three aspects, including the time percent, charging energy efficiency and the capacity of battery at different temperatures and charging current.
Technical Paper

Parameter Identification of Battery Pack Considering Cell Inconsistency

2017-03-28
2017-01-1214
Lithium-ion batteries have been applied in the new energy vehicles more and more widely. The inconsistency of battery cells imposes a lot of difficulties in parameter and state estimations. This paper proposes a new algorithm which can online identify the parameters of each individual battery cell accurately with limited increase of computational cost. An equivalent circuit battery model is founded and based on the RLS (recursive least squares) algorithm, an optimization algorithm with the construction of weight vectors is proposed which can identify the parameters of lithium battery pack considering inconsistency of single battery cell. Firstly, the average value of the parameters of the battery pack is identified with the traditional RLS algorithm. Then the ratios between the parameters of each battery cell can be deduced from the mathematical model of battery. These ratios are used to determine the weight vector of each parameter of individual battery cells.
Technical Paper

Experimental Investigation of AC Pulse Heating Method for NMC Lithium-Ion Battery at Subzero Temperatures

2017-03-28
2017-01-1217
An alternating current (AC) heating method for a NMC lithium-ion battery with 8Ah capacity is proposed. The effects of excitation frequency, current amplitudes, and voltage limit condition on the temperature evolution are investigated experimentally. Current amplitudes are set to 24A(3C), 40(5C), and 64A(8C), and excitation frequencies are set to 300Hz, 100Hz, 30Hz, 10Hz, 5Hz, and 1Hz respectively. The voltage limitations are necessary to protect cells from overcharge and over-discharge. Therefore the voltage limit condition (4.2V/2.75V, 4.3V/2.65V, and 4.4V/2.55V) are also considered in depth to verify the feasibility of the AC heating method. The temperature rises prominently as the current increases, and the decrement of frequencies also lead to the obvious growth of battery temperature. The battery obtain the maximum temperature rise at 64A and 1Hz, which takes 1800s to heat up the battery from -25°C to 18°C.
Technical Paper

A Lithium-Ion Battery Optimized Equivalent Circuit Model based on Electrochemical Impedance Spectroscopy

2015-04-14
2015-01-1191
An electrochemical impedance spectroscopy battery model based on the porous electrode theory is used in the paper, which can comprehensively depict the internal state of the battery. The effect of battery key parameters (the radius of particle, electrochemical reaction rate constant, solid/electrolyte diffusion coefficient, conductivity) to the simulated impedance spectroscopy are discussed. Based on the EIS analysis, a lithium-ion battery optimized equivalent circuit model is built. The parameters in the equivalent circuit model have more clear physical meaning. The reliability of the optimized equivalent circuit model is verified by compared the model and experiments. The relationship between the external condition and internal resistance could be studied according to the optimized equivalent circuit model. Thus the internal process of the power battery is better understood.
Technical Paper

Research on Charging Strategy of Lithium-ion Battery

2015-04-14
2015-01-1192
Lithium-ion battery charging strategy affects charging time of electric vehicles, energy efficiency of entire vehicle, service life and safety. This paper focuses on the lithium iron phosphate (LiFePO4) battery, based on the battery internal mechanism and the working conditions, taking charging time, effective full-charge capacity and charge energy efficiency as the evaluation indexes. Firstly, through a series of comparative experiments of the constant-current constant-voltage and the constant current charging strategy, the evaluation indexes variations in different temperatures and charging currents have been studied in the paper. By analyzing the respective characteristics of constant current charging phase and constant voltage charging phase in the whole charging process and their own contributions, we have found out the superiority of the constant current charging strategy.
Journal Article

A Novel ZSB-PAM Power Regulation Method Applied in Wireless Charging System for Vehicular Power Batteries

2015-04-14
2015-01-1194
Wireless charging system for vehicular power batteries is becoming more and more popular. As one of important issues, charging power regulation is indispensable for online control, especially when the distance or angle between chassis and ground changes. This paper proposes a novel power regulation method named Z-Source-Based Pulse-Amplitude-Modulation (ZSB-PAM), which has not been mentioned in the literatures yet. The ZSB-PAM employs a unique impedance network (two pairs of inductors and capacitors connected in X shape) to couple the cascaded H Bridge to the power source. By controlling the shoot-through state of H bridge, the input voltage to H bridge can be boosted, thus the transmitter current can be adjusted, and hence, charging current and power for batteries. A LCL-LCL resonant topology is adopted as the main transfer energy carrier, for it can work with a unity power factor and have the current source characteristic which is suitable for battery charging.
Technical Paper

SOC Estimation of Battery Pack Considering Cell Inconsistency

2019-04-02
2019-01-1309
Range anxiety problem has always been one of the biggest concern of consumers for pure electric vehicles. Accurate driving range prediction is based on accurate lithium-ion battery pack SOC (State of Charge) estimation. In this article, a complete SOC estimation algorithm is proposed from cell level to battery pack level. To begin with, the equivalent circuit model (ECM) is applied as the model of battery cell. ECM parameters are identified every 10% SOC interval through genetic algorithm. The dual extended Kalman filtering (DEKF) algorithm is adopted for cell-level SOC and ohmic resistance R0 estimation. The estimation accuracy of cell SOC and R0 is verified under NEDC dynamic working condition. The cell-level SOC estimation error is below 1%. However, cell inconsistency can always result in inaccurate cell SOC estimation inside the battery pack. The impact of initial SOC inconsistency and internal resistance inconsistency between cells on battery pack SOC is specifically analyzed.
Technical Paper

On-line Lithium-Ion Battery State-of-Power Prediction by Twice Recursive Method Based on Dynamic Model

2019-04-02
2019-01-1311
State-of-Power (SoP) prediction of Li-ion battery is necessary in battery management system for electric vehicles in order to deal with limited conditions, prevent overcharge and over discharge situations, increase the life of the battery and provide effective battery operation. This article suggests a method to on-line predict the 10-s charge and discharge peak power of Li-ion battery by twice recursions. First with the dynamic battery model we use the first recursion based on a least square method to get parameters which are influenced by the state of charge of Li-ion battery and temperature, etc. The dynamic model is an equivalent circuit model. Current and voltage are input online into the battery model. By recursive least square method the parameters are updated in real time. Moreover, when we use a recursive method to get real-time parameters, we add an extra proper factor to abandon old datum, which increases the real-time capability of state-of-power prediction.
Technical Paper

Thermal Model of High-Power Lithium Ion Battery Under Freezing Operation

2018-04-03
2018-01-0445
Lithium ion battery is considered as one of the most possible energy storage equipment for new energy vehicles (EV, HEV, etc.) because of the advantages of long cycle life, high power density and low self-discharge rate. However, under freezing condition high power battery suffers of significant performances losses. For example, they would suffer from significant power capability losses and poor rate performance, which would restrict the availability to delivery or to gain of high current in transient conditions. To evaluate those performance drawbacks and to make an efficient design, good mathematical models are required for system simulation especially for battery thermal management. In this paper, a three-dimensional homogenization thermal model of a 20 Ah prismatic lithium ion battery with LiFePO4 (LFP) cathode is described.
Technical Paper

Bi-Directional Equalization System for Li-Ion Battery Pack Based on Fly-back Transformer

2018-04-03
2018-01-0442
For balancing Li-ion battery cells connected in series and effectively improving the consistency of the cells, a bi-directional equalization system based on fly-back transformer is proposed. Unlike the passive equalization technology using a resistor or active equalization with expensive DC-DC converter for the balancing among the cells, this equalization circuit consists of the fly-back transformer and RCD circuit, which can easily and cheaply realize the energy transfer between the whole battery module and the cells, and thus achieving bidirectional equalization. In this system, both the primary side and the secondary side of multi-winding transformer are connected to a MOSFET. All MOSFETs are controlled by the PWM signal. The control timing and duty ratio of the PWM control signal are determined through the simulation analysis. Meanwhile, an RCD circuit is applied at the primary side of multi-winding transformer for buffering the peak voltage caused by leakage inductance.
Technical Paper

The Aging Law of Low Temperature Charging of Lithium-Ion Battery

2019-04-02
2019-01-1204
With the rise of new energy vehicles, lithium-ion batteries have been widely used. However, the safety, cruising range and practicality of electric vehicles are still major obstacles to their development. Among them, the low-temperature performance of electric vehicles is receiving more and more attention. Lithium-ion batteries have poor low-temperature performance. At low temperatures, not only the charging efficiency is lowered, but also the energy that can be flushed is correspondingly reduced, thereby resulting in a decrease in capacity and an increase in aging. At present, the mechanism and influence factors of battery discharge aging have been studied relatively well, but there are few researches on low temperature charging aging of batteries.
Technical Paper

High Frequency Impedance and Electromagnetic Interference Suppression of Lithium-Ion Power Battery Pack

2019-04-02
2019-01-1060
When electric vehicle speeds up or slows down, rapidly changing current and voltage (di/dt and du/dt) would occurs in its lithium-ion power battery. In this way, the impedance of power battery would changes with parasitic parameters because that the ion transport in electrolytes would influence diffusion effect and polarization effect of battery. Thus, the lithium-ion battery cannot be regarded as ideal component in high frequency, which could cause unpredictable problem in electromagnetic interference (EMI). However, most previous studies took lithium-ion power batteries as disturbed objects or transmission routes, which ignore the electromagnetic interference of battery itself. Based on it, this paper analyses the internal mechanism of EMI in lithium-ion power battery, and simulates the distribution of electromagnetic field as well as it corresponding interference suppression measures. Firstly, the test platform for parameter extraction of battery cell is built.
Technical Paper

Recent Progress on In-Situ Monitoring and Mechanism Study of Battery Thermal Runaway Process

2020-04-14
2020-01-0861
Lithium-ion batteries (LIBs) with relatively high energy, power density and eco-friendly characteristic are considered as a vital energy source in consumer market of portable electronics and transportation sector especially in electric vehicles (EVs). To meet the higher capacity requirements, the nickel-rich LIBs with higher capacity has been used as the commercial power batteries. However, the battery with higher energy density is more destructive, which could result in thermal runaway accidents and make the battery safety issues become more and more prominent. Thermal runaway of LIBs is one of the key scientific problems in safety issues. Until now, the inducement of thermal runaway process is complicated which perplex researchers and industry a lot. On the one hand, the internal mechanism about thermal runaway should be deeply studied. On the other hand, in-situ monitoring should be developed to supply the mechanism study and early warning.
X