Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Multi-Target Tracking Algorithm in the Complicated Road Condition for Automotive Millimeter-wave Radar

Automotive radar is the most important component in the autonomous driving system, which detects the obstacles, vehicles and pedestrians around with acceptable cost. The target tracking is one of the key functions in the automotive radar which estimates the position and speed of the targets having regarding to the measurement inaccuracy and interferences. Modern automotive radar requires a multi-target tracking algorithm, as in the radar field of view hundreds of targets can present. In practice, the automotive radar faces very complicated and fast-changing road conditions, for example tunnels and curved roads. The targets’ unpredictable movements and the reflections of the electromagnetic wave from the tunnel walls and the roads will make the multi-target tracking a difficult task. Such situation may last several seconds so that the continuous tracks of the targets cannot be maintained and the tracks are dropped mistakenly.
Technical Paper

3D Automotive Millimeter-Wave Radar with Two-Dimensional Electronic Scanning

The radar-based advanced driver assistance systems (ADAS) like autonomous emergency braking (AEB) and forward collision warning (FCW) can reduce accidents, so as to make vehicles, drivers and pedestrians safer. For active safety, automotive millimeter-wave radar is an indispensable role in the automotive environmental sensing system since it can work effectively regardless of the bad weather while the camera fails. One crucial task of the automotive radar is to detect and distinguish some objects close to each other precisely with the increasingly complex of the road condition. Nowadays almost all the automotive radar products work in bidimensional area where just the range and azimuth can be measured. However, sometimes in their field of view it is not easy for them to differentiate some objects, like the car, the manhole covers and the guide board, when they align with each other in vertical direction.
Technical Paper

Analyze Signal Processing Software for Millimeter-Wave Automotive Radar System by Using a Software Testbench Built by SystemVue

Millimeter-wave automotive radars can prevent traffic accidents and save human lives as they can detect vehicles and pedestrians even in night and in bad weather. Various types of automotive radars operating at 24 and 77 GHz bands are developed for various applications, like adaptive cruise control, blind-spot detection and lane change assistance. In each year, millions of millimeter-wave radar are sold worldwide. Millimeter-wave radar is composed of radar hardware and radar signal processing software, which detects the targets among noise, measures the distance, longitudinal speed and the azimuth angle of the targets, tracks the targets continuously, and controls the ego vehicle to brake or accelerate. Performance of the radar signal processing software is closely related with the radar hardware properties and radar measurement conditions.
Technical Paper

Tracking of Extended Objects with Multiple Three-Dimensional High-Resolution Automotive Millimeter Wave Radar

Estimating the motion state of peripheral targets is a very important part in the environment perception of intelligent vehicles. The accurate estimation of the motion state of the peripheral targets can provide more information for the intelligent vehicle planning module which means the intelligent vehicle is able to anticipate hazards ahead of time. To get the motion state of the target accurately, the target’s range, velocity, orientation angle and yaw rate need to be estimated. Three-dimensional high-resolution automotive millimeter wave radar can measure radial range, radial velocity, azimuth angle and elevation angle about multiple reflections of an extended target. Thus, the three-dimensional range information and three-dimensional velocity information can be obtained. With multiple three-dimensional high-resolution automotive millimeter-wave radar, it is possible to measure information in various directions of a target.
Technical Paper

The Application of Compressed Sensing in Automotive Radar Signal Processing for the Target Location

Millimeter wave (MMW) automotive radar plays an important role in the advanced driving assistance system (ADAS), which detects vehicles, pedestrians and other obstacles. In the adaptive cruise control (ACC) and the automatic emergency brake (AEB) system, the target needs to be oriented. One of the automotive radar’s task is to get the direction information which includes the range, speed, azimuth and height of the target by high intermediate frequency (IF) signal sampling rate. In order to solve the problem of high sampling rate for the MMW radar caused by the traditional Nyquist sampling theorem when the target is located, a new method based on the compressed sensing (CS) for the target location is proposed in this paper. This paper presents the linear frequency modulated continuous wave (LFMCW) model and simulates the sampling and reconstruction of the radar’s IF signal via CS technique by using MATLAB.
Technical Paper

Hybrid Camera-Radar Vehicle Tracking with Image Perceptual Hash Encoding

For sensing system, the trustworthiness of the variant sensors is the crucial point when dealing with advanced driving assistant system application. In this paper, an approach to a hybrid camera-radar application of vehicle tracking is presented, able to meet the requirement of such demand. Most of the time, different types of commercial sensors available nowadays specialize in different situations, such as the ability of offering a wealth of detailed information about the scene for the camera or the powerful resistance to the severe weather for the millimeter-wave (MMW) radar. The detection and tracking in different sensors are usually independent. Thus, the work here that combines the variant information provided by different sensors is indispensable and worthwhile. For the real-time requirement of merging the measurement of automotive MMW radar in high speed, this paper first proposes a fast vehicle tracking algorithm based on image perceptual hash encoding.
Technical Paper

Study on Target Tracking Based on Vision and Radar Sensor Fusion

Faced with intricate traffic conditions, the single sensor has been unable to meet the safety requirements of Advanced Driver Assistance Systems (ADAS) and autonomous driving. In the field of multi-target tracking, the number of targets detected by vision sensor is sometimes less than the current tracks while the number of targets detected by millimeter wave radar is more than the current tracks. Hence, a multi-sensor information fusion algorithm is presented by utilizing advantage of both vision sensor and millimeter wave radar. The multi-sensor fusion algorithm is based on centralized fusion strategy that the fusion center takes a unified track management. At First, vision sensor and radar are used to detect the target and to measure the range and the azimuth angle of the target. Then, the detections data from vision sensor and radar is transferred to fusion center to join the multi-target tracking with the prediction of current tracks.
Technical Paper

IMM-KF Algorithm for Multitarget Tracking of On-Road Vehicle

Tracking vehicle trajectories is essential for autonomous vehicles and advanced driver-assistance systems to understand traffic environment and evaluate collision risk. In order to reduce the position deviation and fluctuation of tracking on-road vehicle by millimeter-wave radar (MMWR), an interactive multi-model Kalman filter (IMM-KF) tracking algorithm including data association and track management is proposed. In general, it is difficult to model the target vehicle accurately due to lack of vehicle kinematics parameters, like wheel base, uncertainty of driving behavior and limitation of sensor’s field of view. To handle the uncertainty problem, an interacting multiple model (IMM) approach using Kalman filters is employed to estimate multitarget’s states. Then the compensation of radar ego motion is achieved, since the original measurement is under the radar polar coordinate system.
Technical Paper

The Dynamic Electromagnetic Distribution and Electromagnetic Interference Suppression of Smart Electric Vehicle

Smart electric vehicles need more accurate and more timely information as well as control than traditional vehicles, which depends on great environmental sensors such as millimeter-wave radar. In this way, the electromagnetic compatibility of whole vehicle would confront more serious challenges because of its high frequency range. Thus, this paper studies the electromagnetic distribution and electromagnetic interference suppression of smart electric vehicles with the followings. Firstly, the millimeter wave radar is modeled and optimized. Micro strip patch antenna, with small size, light mass and low cost, is used as array element of antenna. Millimeter wave radar is modeled and simulated step by step from array element to line array to planar matrix. Then the Cross Shape - Uniplanar Compact - Electromagnetic Band Gap (CS-UC-EBG) structure is deployed to optimize its electromagnetic characteristics, based on finite time domain difference model theory.
Technical Paper

Drivable Area Detection and Vehicle Localization Based on Multi-Sensor Information

Multi-sensor information fusion framework is the eyes for unmanned driving and Advanced Driver Assistance System (ADAS) to perceive the surrounding environment. In addition to the perception of the surrounding environment, real-time vehicle localization is also the key and difficult point of unmanned driving technology. The disappearance of high-precision GPS signal suddenly and defect of the lane line will bring much more difficult and dangerous for vehicle localization when the vehicle is on unmanned driving. In this paper, a road boundary feature extraction algorithm is proposed based on multi-sensor information fusion of automotive radar and vision to realize the auxiliary localization of vehicles. Firstly, we designed a 79GHz (78-81GHz) Ultra-Wide Band (UWB) millimeter-wave radar, which can obtain the point cloud information of road boundary features such as guardrail or green belt and so on.