Refine Your Search

Topic

Search Results

Technical Paper

Study of Stability Control for Electric Vehicles with Active Control Differential

2013-04-08
2013-01-0715
This article conducts a research on the active control differential (ACD) yaw moment stability control for central motor driven automobiles. By calculation, the active control differential yaw moment generation ability which is limited by the maximum differential twist ratio and the motor output torque is not enough compared with traditional Electronic Stability Program (ESP). A Matlab and CarSim joint simulation is applied on double lane change and sine wave steering input condition, through which the active control differential effect is analyzed. It is concluded that yaw moment control using active control differential has improved the steering sensitivity and yaw rate tracking effect to some extent in double lane change test and it also has been verified that it works effectively to keep the stability of the vehicle in sine wave test.
Technical Paper

An Anti-Lock Braking Control Strategy for 4WD Electric Vehicle Based on Variable Structure Control

2013-04-08
2013-01-0717
Based on the four-wheel-drive electric vehicle (4WD EV), a variable structure control (VSC) strategy is designed in this paper for the anti-lock braking control. With nonpeak friction coefficient as target, sign judgment method of switch function in this VSC strategy is improved and a new control algorithm is proposed. The improved VSC strategy is made robust to the parameters of the algorithm and verified by the computer simulation as well as the hard-in-loop test. The results show that the slip rate can be controlled to a point in the stable area near the optimal slip ratio and the control strategy can effectively realize the anti-lock braking control.
Technical Paper

Instantaneous Optimization Energy Management for Extended-Range Electric Vehicle Based on Minimum Loss Power Algorithm

2013-09-08
2013-24-0073
Most of the existing energy management strategies for Extended-Range Electric Vehicles (E-REVs) are heuristic, which restricts coordination between the battery and the Range Extender. This paper presents an instantaneous optimization energy management strategy based on the Minimum Loss Power Algorithm (MLPA) for a fuel cell E-REV. An instantaneous loss power function of power train system is constructed by considering the charge and discharge efficiency of the battery, together with the working efficiency of the fuel cell Range Extender. The battery working mode and operating points of the fuel cell Range Extender are decided by an instantaneous optimization module (an artificial neural network) that aims to minimize the loss power function at each time step.
Technical Paper

Temperature Difference Control Strategy and Flow Field Uniformity Analysis of Ni-Mh Power Battery Package

2012-09-24
2012-01-2018
The nonuniformity property of the temperature field distribution will not only affect on the battery charging and discharging performance but also its lifetime. In this paper the elementary structural design is implemented for Ni-Mh battery package and the corresponding test platform is constructed from the point of view of temperature difference control strategy, the test results show that the present structural design schemes can effectively restrain temperature difference enlargement among the battery stacks. Through the application of adopting the flow field uniformity method to control temperature difference, and flow field optimization inside the battery package, it is found that the flow field velocity change quantity ΔV is gradually reduced as the increase of the afflux hood angle Ak and air vent width Da, and the difference of battery temperature is relatively lower, which denoting that the corresponding relationship can be created based on test data.
Technical Paper

Effect of Electrode Tabs Configuration on the Electric-Thermal Behavior of a Li-Ion Battery

2014-04-01
2014-01-1862
This paper presents a three-dimensional electrochemical electrode plate pair model to study the effect of the electrode tabs configuration. Understanding the distribution of current density, potential and heat generation rate is critical for designing li-ion batteries and conducting effective design optimization studies. We developed several electrode plate pair models which were different in position and size of tabs. Results showed the influence and comparison of different configuration on the distribution of current density, potential density and heat generation rate at different discharge process. The distribution was predicted as a function of tabs. It can provide a theoretical basis for improving battery thermal performance and cooling system design.
Journal Article

Design and Thermal Analysis of a Passive Thermal Management System Using Composite Phase Change Material for Rectangular Power Batteries

2015-04-14
2015-01-0254
A passive thermal management system (TMS) using composite phase change material (PCM) for large-capacity, rectangular lithium-ion batteries is designed. A battery module consisting of six Li-ion cells connected in series was investigated as a basic unit. The passive TMS for the module has three configurations according to the contact area between cells and the composite PCM, i.e., surrounding, front-contacted and side-contacted schemes. Firstly, heat generation rate of the battery cell was calculated using the Bernardi equation based on experimentally measured heat source terms (i.e. the internal resistance and the entropy coefficient). Physical and thermal properties such as density, phase change temperature, latent heat and thermal conductivity of the composite PCM were also obtained by experimental methods. Thereafter, thermal response of the battery modules with the three TMS configurations was simulated using 3D finite element analysis (FEA) modeling in ANSYS Fluent.
Journal Article

Estimation on the Location of Peak Pressure at Quick Start of HEV Engine Employing Ion Sensing Technology

2008-06-23
2008-01-1566
In this paper an estimation method on location of peak pressure (LPP) employing flame ionization measurement, with the spark plug as a sensor, was discussed to achieve combustion parameters estimation at quick start of HEV engines. Through the cycle-based ion signal analysis, the location of peak pressure can be extracted in individual cylinder for the optimization of engine quick start control of HEV engine. A series of quick start processes with different cranking speed and engine coolant temperature are tested for establishing the relationship between the ion signals and the combustion parameters. An Artificial Neural Network (ANN) algorithm is used in this study for estimating these two combustion parameters. The experiment results show that the location of peak pressure can be well established by this method.
Technical Paper

Characteristics of Three-way Catalyst during Quickly Start-up Process in a PFI Engine for HEV Application

2009-04-20
2009-01-1325
The characteristics of three-way-catalyst during engine start process were investigated based on a simulated start/stop test system for HEV application. Although the catalyst has already reached its light-off temperature, the conversion efficiency is poor during engine start process due to the deviation of lambda from stoichiometric. The high concentration hydrocarbon emission spike can be stored by catalyst substrate temporarily, then it is released. This dynamic process decreases the conversion efficiency for the following exhaust hydrocarbon emission. When the initial temperature of catalyst substrate before engine start increased from 150°C to 400°C, the conversion efficiency for both the hydrocarbon and NO are increased.
Technical Paper

Study on the Braking Torque Allocation of the ABS Based on the Frequency of the Electro-Hydraulic Brake

2015-09-27
2015-01-2703
Study on the braking torque allocation of the ABS (Anti-lock Brake System) of the electro-hydraulic brake system in the distributed drive electric vehicles, using a hierarchical control structure, of which the lower controller takes a braking torque allocation strategy based on frequency, so as to achieve a good braking effect. The lower controller uses the strategies which are based on the filter principle or the weighted least squares algorithm. To the former, Butterworth filter is selected to execute the braking torque allocation. Then the ABS braking torque allocation strategy based on Butterworth filter and the weighted least squares are designed and analyzed respectively, finally their braking effects are simulated and contrasted in Simulink and AMESim.
Journal Article

The Influences of the Subframe Flexibility on Handling and Stability Simulation When Using ADAMS/Car

2016-04-05
2016-01-1637
To analyze the K&C (kinematics and compliance), handling and stability performance of the vehicle chassis, some simulations are usually performed using a multi-body dynamics software named ADAMS. This software introduces assumptions that simplify the components of the suspension as rigid bodies. However, these assumptions weaken the accuracy of the simulation of ADAMS. Therefore the use of flexible bodies in K&C and handling and stability simulation in ADAMS is needed to conduct more precise suspension system designs. This paper mainly analyses the influences of the subframe flexibility on handling and stability simulation in ADAMS/Car. Two complete vehicle models are built using ADAMS/Car and Hypermesh. The only difference between the two models is the subframe of the front McPherson suspension. One of the subframes is simplified as a rigid body. The other one is a flexible body built using the MNF file from Hypermesh.
Technical Paper

An Integrated-Electro-Hydraulic Brake System for Active Safety

2016-04-05
2016-01-1640
An integrated-electro-hydraulic brake system (I-EHB) is presented to fulfill the requirements of active safety. Because I-EHB can control the brake pressure accurately and fast. Furthermore I-EHB is a decoupled system, so it could make the maximum regenerative braking while offers the same brake pedal feeling and also good for ADAS and unmanned driving application. Based on the analysis of current electrohydraulic brake systems, regulation requirements and the requirements for brake system, the operating mode requirements of I-EHB are formed. Furthermore, system topological structure and a conceptual design are proposed. After the selection of key components, the parameter design is accomplished by modeling the system. According to the above-mentioned design method, an I-EHB prototype and test rig is made. Through the test rig, characteristics of the system are tested. Results show that this I-EHB system responded rapidly.
Technical Paper

Hydraulic Control of Integrated Electronic Hydraulic Brake System based on Command Feed-Forward

2016-04-05
2016-01-1658
With the development of vehicle electrification, electronic hydraulic brake system is gradually applied. Many companies have introduced products related to integrated electronic hydraulic brake system (I-EHB). In this paper, an I-EHB system is introduced, which uses the motor to drive the reduction mechanism as a power source for braking. The reduction mechanism is composed of a turbine, a worm, a gear and a rack. A control method based on command feed-forward is proposed to improve the hydraulic pressure control of I-EHB. Based on previous research, we simplify the system to first order system, and the theoretical design of the command feed-forward compensator is carried out. The feed-forward controller is applied, including the velocity feed-forward and the acceleration feed-forward, to improve the response speed and tracking effect of the system.
Technical Paper

Design and Research of Micro EV Driven by In-Wheel Motors on Rear Axle

2016-09-18
2016-01-1950
As is known to all, the structure of the chassis has been greatly simplified as the application of in-wheel motor in electric vehicle (EV) and distributed control is allowed. The micro EV can alleviate traffic jams, reduce the demand for motor and battery capacity due to its small size and light weight and accordingly solve the problem that in-wheel motor is limited by inner space of the wheel hub. As a result, this type of micro EV is easier to be recognized by the market. In the micro EV above, two seats are side by side and the battery is placed in the middle of the chassis. Besides, in-wheel motors are mounted on the rear axle and only front axle retains traditional hydraulic braking system. Based on this driving/braking system, distribution of braking torque, system reliability and braking intensity is analyzed in this paper.
Technical Paper

Comparison of Different Energy Storage Systems for Range-Extended Electric Urban Bus

2016-09-27
2016-01-8093
Recent years, electric vehicles (EVs) have been widely used as urban transit buses in China, but high costs and a dwindling driving distance caused mainly by relatively frequent usage rate have put the electric bus in a difficult position. Range-extended electric bus (REEbus) is taken as an ideal transitional powertrain configuration, but its efficiency is not so high. Besides, with less batteries to endure more frequently charging and discharging, the lifecycle of battery pack can also be shorten. Aiming at it, range-extended electric powertrains with diverse energy storage systems (ESSs) and proper auxiliary power unit (APU) control strategies are matched and compared to find most proper ESS configuration for REEbus through simulation, which is based on a 12 meter-long urban bus.
Technical Paper

Thermal Management of Power Batteries for Electric Vehicles Using Phase Change Materials: A Review

2016-04-05
2016-01-1204
As one of the most crucial components in electric vehicles, power batteries generate abundant heat during charging and discharging processes. Thermal management system (TMS), which is designed to keep the battery cells within an optimum temperature range and to maintain an even temperature distribution from cell to cell, is vital for the high efficiency, long calendar life and reliable safety of these power batteries. With the desirable features of low system complexity, light weight, high energy efficiency and good battery thermal uniformity, thermal management using composite phase change materials (PCMs) has drawn great attention in the past fifteen years. In the hope of supplying helpful guidelines for the design of the PCM-based TMSs, this work begins with the summarization of the most commonly applied heat transfer enhancement methods (i.e., the use of thermally conductive particles, metal fin, expanded graphite matrix and metal foam) for PCMs by different researchers.
Technical Paper

Impedance Modeling and Aging Research of the Lithium-Ion Batteries Using the EIS Technique

2019-04-02
2019-01-0596
As the core component of electric vehicles (EVs), batteries attach increasingly general attention along with the rapid expansion of electric vehicle market. Battery performance effect directly the safety and reliability of the EVs, so its managing technologies are more and more crucial. Among them, the methods of estimating the state of health (SoH) and predicting remaining useful life become the focuses, which are essential to ensure their dependability and optimum performance over time. This paper mainly focuses on impedance modeling and aging research (aging diagnosis and life prediction) of lithium-ion batteries. Electrochemical impedance spectroscopy (EIS) technique is used to obtain impedance characteristic of batteries. On the one hand, equivalent circuit modeling (ECM) can be motivated by EIS, with the goal to fit measured impedance data using circuit elements.
Technical Paper

Genetic Algorithm-Based Parameter Optimization of Energy Management Strategy and Its Analysis for Fuel Cell Hybrid Electric Vehicles

2019-04-02
2019-01-0358
Fuel cell hybrid electric vehicles (FCHEVs) composed of fuel cells and batteries can improve the dynamic response and durability of vehicle propulsion. In addition, braking energy can be recovered by batteries. The energy management strategy (EMS) for distributing the requested power through different types of energy sources plays an important role in FCHEVs. Reasonable power split not only improves vehicle performance but also enhances fuel economy. In this paper, considering the power tracking control strategy which is widely adopted in Advanced Vehicle Simulator (ADVISOR), a constrained nonlinear programming parameter optimization model is established for minimizing fuel consumption. The principal parameters of power tracking control strategy are set as the optimized variables, with the dynamic performance index of FCHEVs being defined as the constraint condition. Then, the genetic algorithm (GA) is applied in the control strategy design for solving the optimization problem.
Technical Paper

Experiment Studies of Charging Strategy for Lithium-Ion Batteries

2019-04-02
2019-01-0792
Regarding the lithium-ion batteries used in the electric vehicle, charging time and charging efficiency are the concern of the public. In this paper, a lot of experiments were conducted to investigate the common charging strategies, including the CC-CV (constant current-constant voltage) charging and the pulse current charging, for the LiFePO4 batteries, which are still widely used in commercial vehicles. Charging temperature and the charging current in the CC phase are the main influence factors to be studied for the CC-CV charging strategy, and the contribution of the CC phase and CV phase to the whole charging is analyzed from three aspects, including the time percent, charging energy efficiency and the capacity of battery at different temperatures and charging current.
Technical Paper

Potential Risk Assessment Algorithm in Car Following

2019-04-02
2019-01-1024
In this paper, a potential risk assessment algorithm is proposed. The obvious risk assessment measure is defined as time to collision (TTC), whereas the potential risk measure is defined as the time before the host vehicle has to decelerate to avoid a rear-end collision assuming that the target vehicle brakes, i.e. time margin (TM). The driving behavior of the human driver in the dangerous car following scenario is studied by using the naturalistic driving data collected by video drive record (VDR), which include 78 real dangerous car following dangerous scenarios. A potential risk assessment algorithm was constructed using TM and the dangerous car following scenarios. Firstly, the braking starting time during dangerous car following is identified. Next, the TM at brake starting time of the 78 dangerous car following scenarios is analyzed. In the last, the thresholds of the potential risk levels are achieved.
Technical Paper

Parameter Identification of Battery Pack Considering Cell Inconsistency

2017-03-28
2017-01-1214
Lithium-ion batteries have been applied in the new energy vehicles more and more widely. The inconsistency of battery cells imposes a lot of difficulties in parameter and state estimations. This paper proposes a new algorithm which can online identify the parameters of each individual battery cell accurately with limited increase of computational cost. An equivalent circuit battery model is founded and based on the RLS (recursive least squares) algorithm, an optimization algorithm with the construction of weight vectors is proposed which can identify the parameters of lithium battery pack considering inconsistency of single battery cell. Firstly, the average value of the parameters of the battery pack is identified with the traditional RLS algorithm. Then the ratios between the parameters of each battery cell can be deduced from the mathematical model of battery. These ratios are used to determine the weight vector of each parameter of individual battery cells.
X