Refine Your Search

Topic

Search Results

Journal Article

The Impact of Gear Meshing Nonlinearities on the Vehicle Launch Shudder

2015-04-14
2015-01-0610
During the launch of a car, severe torsional vibration sometimes may occur in its driveline due to somewhat the slipping of the clutch, its intuitive sense for an occupant is the longitudinal vibration of the vehicle, referred to as the launch shudder whose characteristic frequency is from 5 to 25 Hz generally. As the main vibration sources of the driveline and its crucial nonlinear components, the variable stiffness and backlash of the gear meshing are considered, their impacts on the launch shudder are analyzed in this paper. Conformal mapping, finite element method and regression method etc. are the main approaches to calculate the variable meshing stiffness of a gear pair. If this stiffness is get, it can usually be substituted for its approximate analytical expression, just with finite harmonic terms, in Fourier Series form into Ordinary Differential Equations(ODEs) to calculate the vehicle responses with its nonlinearity considered.
Journal Article

Lubrication Analysis of Floating Ring Bearings Considering Floating Ring Heat Transfer

2016-04-05
2016-01-0485
Turbochargers improve performance in internal combustion engines. Due to low production costs, TC assemblies are supported on floating ring bearings. In current lubrication analysis of floating ring bearing, inner and outer oil film are usually supposed to be adiabatic. The heat generated by frictional power is carried out by the lubricant flow. In reality, under real operating conditions, there existed heat transfer between the inner and outer film. In this paper, the lubrication performance of floating ring bearing when considering heat transfer between inner film and outer film is studied. The lubrication model of the floating ring is established and the heat transferred through the ring between the inner and outer film is calculated. The calculation results show that heat flow between the inner and outer film under different outer film eccentricity ratio and rotate ratio has a large difference.
Journal Article

Numerical Models for PEMFC Cold Start: A Review

2017-03-28
2017-01-1182
Startup from subzero temperature is one of the major challenges for polymer electrolyte membrane fuel cell (PEMFC) to realize commercialization. Below the freezing point (0°C), water will freeze easily, which blocks the reactant gases into the reaction sites, thus leading to the start failure and material degradation. Therefore, for PEMFC in vehicle application, finding suitable ways to reach successful startup from subfreezing environment is a prerequisite. As it’s difficult and complex for experimental studies to measure the internal quantities, mathematical models are the effective ways to study the detailed transport process and physical phenomenon, which make it possible to achieve detailed prediction of the inner life of the cell. However, review papers only on cold start numerical models are not available. In this study, an extensive review on cold start models is summarized featuring the states and phase changes of water, heat and mass transfer.
Technical Paper

Joint Calibration of Dual LiDARs and Camera Using a Circular Chessboard

2020-04-14
2020-01-0098
Environmental perception is a crucial subsystem in autonomous vehicles. In order to build safe and efficient traffic transportation, several researches have been proposed to build accurate, robust and real-time perception systems. Camera and LiDAR are widely equipped on autonomous self-driving cars and developed with many algorithms in recent years. The fusion system of camera and LiDAR provides state-of the-art methods for environmental perception due to the defects of single vehicular sensor. Extrinsic parameter calibration is able to align the coordinate systems of sensors and has been drawing enormous attention. However, differ from spatial alignment of two sensors’ data, joint calibration of multi-sensors (more than two sensors) should balance the degree of alignment between each two sensors.
Technical Paper

Active and Passive Control of Torsional Vibration in Vehicle Hybrid Powertrain System

2020-04-14
2020-01-0408
The vibration characteristics of hybrid vehicles are very different from that of traditional fuel vehicles. In this paper, the active and passive control schemes are used to inhibit the vibration issues in vehicle hybrid powertrain system. Firstly the torsional vibration mechanical model including engine, motor and planetary gear subsystems is established. Then the transient vibration responses of typical working condition are analyzed through power control strategy. Consequently the active and passive control of torsional vibration in hybrid powertrain system is proposed. The active control of the motor and generator torque is designed and the vehicle longitudinal vibration is reduced. The vibration of the planetary gear system is ameliorated with passive control method by adding torsional vibration absorbers to power units. The vibration characteristics in vehicle hybrid powertrain system are effectively improved through the active and passive control.
Technical Paper

System Evaluation Method for Two Planetary Gears Hybrid Powertrain under Gray Relational Analysis Based on Fuzzy AHP and Entropy Weight Method

2020-04-14
2020-01-0430
Millions of configurations of power-split hybrid powertrain can be generated due to variation in number of planetary-gear sets (PG), difference in number, type and installation location of shift actuators (clutches or brakes), and difference in connection positions of power components. Considering the large number of configurations, complex structures and control modes, it is vital to construct an appropriate multi-index system evaluation method, which directly affects the requirement fulfillment, the time and cost of 2-PG system configuration design. Considering one-sidedness (dynamics and economic performance), simplicity (linear combination of indicators) and subjectivity (relying on expert experience) of previous system evaluation method of 2-PG system design, a more systematic evaluation method is proposed in this paper. The proposed evaluation system consists of five aspects, involving dynamic, economy, comfort, reliability and cost, and more than 20 indexes.
Technical Paper

Interactive Modes F-ANP Evaluation for In-Vehicle Secondary Tasks

2016-09-14
2016-01-1890
With the development of automotive HMI and mobile internet, many interactive modes are available for drivers to fulfill the in-vehicle secondary tasks, e.g. dialing, volume adjustment, music playing. For driving safety and drivers’ high expectation for HMI, it is urgent to effectively evaluate interactive mode with good efficiency, safety and good user experience for each secondary tasks, e.g. steering wheel buttons, voice control. This study uses a static driving simulation cockpit to provide driving environment, and sets up a high-fidelity driving cockpit based on OKTAL SacnerStudio and three-dimensional modeling technology. The secondary tasks supported by HMI platform are designed by customer demands research. The secondary task test is carried out based on usability test theory, and the influence on driving safety by different interactive modes is analyzed.
Technical Paper

Analysis of Driver Emergency Steering Behavior Based on the China Naturalistic Driving Data

2016-09-14
2016-01-1872
Based on the emergency lane change cases extracted from the China naturalistic driving data, the driving steering behavior divides into three phases: collision avoidance, lateral movement and steering stabilization. Using the steering primitive fitting by Gaussian function, the distribution of the duration time, the relationship between steering wheel rate and deflection were analyzed in three phases. It is shown that the steering behavior essentially is composed of steering primitives during the emergency lane-change. However, the combination of the steering primitives is different according to the specific steering constraints in three phases. In the collision avoidance phase, a single steering primitive with high peak is used for the fast steering; in the lateral movement and stabilization phase, a combination of two or even more steering primitives is built to a more accurate steering.
Technical Paper

Multi-Body Dynamic Simulation and Fatigue Analysis of the Unique Crank - train for a Creative Two-stoke Opposed Piston Diesel Engine

2016-10-17
2016-01-2332
For an innovative opposed-piston diesel engine (OPE) with two-stroke operation mode, it attracted even more attentions than ever in some developed countries all around the world, attributed to the unique advantages of higher power density that conducive to downsize IC engine, as well as the potential of further reducing fuel consumption for outstanding thermal efficiency. To achieve fast practical application and ensure the feasibility in concept design stage, the performance characteristic of OPE crankshaft system was investigated, and thus a theoretical analytic model of crankshaft system in an OP2S (Opposed-piston two stroke) engine was established. The effects of all structural design variables on averaged output torque of OPE crankshaft were analyzed, respectively. It was found that the initial crank angle difference between inner crank web and outer crank web was considered as a most critical contributor to boost the averaged torque output than other design variables.
Technical Paper

Analysis of Gear Rattle Noise and Vibration Characteristics Using Relative Approaches

2016-04-05
2016-01-1121
Noise signals of the driver’s right ear include those of engine, environment, chassis dynamometer, loaded gears and unloaded gears when they are recorded in full vehicle on chassis dynamometer in semi-anechoic room. Gear rattle noise signals of the driver’s right ear caused by unloaded gear pairs can’t be identified or quantified directly. To solve the problems, relative approaches are used to identify and quantify the gear rattle noise signals. Firstly, the rattle noise signals of the driver’s right ear are filtered by human ear characteristic functions and steady noise signals are extracted by regression and smoothing processes. The noise signals are regressed at 200ms interval in the hearing critical frequency bands and smoothed in the flanking frequencies. Then, the noise relative approaches are obtained by subtracting the steady noise signals from the filtered noise signals, which are the transient noise signals of the unloaded gear pairs inducing the rattle noise.
Technical Paper

Gear Rattle Prediction Based on Compliance and Deformation of Gear Contact Points

2016-04-05
2016-01-1094
Generally, the gear rattle noise prediction models are composed of the mass and stiffness elements. The proposals are about the gear inertia or backlash and the shaft inertia or stiffness, but there are many detailed designs in the same inertia, stiffness or backlash conditions. Therefore, these proposals can’t guide detailed designs. These models only investigate the rattle in the rotating degree, and ignore rattle contribution in the radical and axial directions. Those prediction models only consider one or several factors which affect the rattle noise performance. It is difficult to predict the influence of individual factor and multi-factors coupling on the gear rattle noise in a rattle simulation model.
Technical Paper

Finite Element Analysis on Multi-Layer-Steel Cylinder Head Gaskets

2016-04-05
2016-01-1381
Sealing system is an important subsystem of modern high-performance engine. Sealing system reliability directly affects the engine operating conditions. Cylinder head gaskets(CHG) sealing system is of the most importance to the engine sealing system, which is not only responsible for sealing chamber, the cooling fluid and lubricating oil passage, for preventing gas leakage, water leakage and oil leakage, but also responsible for force transferring between cylinder head and cylinder body. Basing on nonlinear solution method, the sealing performance of multi-layer-steel cylinder head gaskets to a gasoline engine is studied with the finite element software ABAQUS. The deformations of the cylinder liners and engine block are also considered.
Technical Paper

The Design and Evaluation of EMB Actuator Scheme

2017-09-17
2017-01-2509
Electromechanical Braking System (EMB) stops the wheel by motor and related enforce mechanism to drive braking pads to clamp the friction plate. It is compact in sized as well as faster in response, which solves the issue of potential leakage and slows response of traditional hydraulic brake system. The institutions at home and abroad have put forward all kinds of new structural schemes of EMB. At present, there are various EMB structural schemes, but the analysis and evaluation of these schemes are relatively few. In this paper, on the basis of a large number of research, the EMB actuator is modular decomposed according to function ,then the parametric 3D model library of each function module is established. According to brake requirements of the target vehicle, a development platform is set up to match EMB actuator structure scheme quickly.
Technical Paper

Unsteady Performance Simulation Analysis of a Waste-Gated Turbocharger Turbine under Different Valve Opening Conditions

2017-10-08
2017-01-2417
An electronic waste-gated turbocharger for automotive application can accurately control the boost pressure and effectively reduce turbo-lag. It can improve the transient responsive performance of engine and the acceleration performance of vehicle, which makes vehicle have a better adaptation to the complex traffic environment. A detailed analysis of aerodynamic working principle of electronic wastegate is the foundation for designing the control strategy of electronic wastegate. Putting turbine with electronic wastegate under unsteady condition that simulates the pulse exhaust gas of engine and studying influences of different valve opening on the performance of turbine has the practical value. This paper sets fixed and periodical unsteady conditions and adopts numerical methods to explore the performance of turbine in twin-entry turbocharger and the flow loss of bypass. Steady simulation structure is given for reference.
Technical Paper

Research on a New Electromagnetic Valve Actuator Based on Voice Coil Motor for Automobile Engines

2017-03-28
2017-01-1070
The electromagnetic valve actuator (EMVA) is considered a technological solution for decoupling between crankshaft and camshaft to improve engine performance, emissions, and fuel efficiency. Conventional EMVA consists of two electromagnets, an armature, and two springs has been proved to have the drawbacks of fixed lift, impact noise, complex control method and large power consumption. This paper proposes a new type of EMVA that uses voice coil motor (VCM) as electromagnetic valve actuator. This new camless valvetrain (VEMA) is characterized by simple structure, flexible controllable and low actuating power. VCM provides an almost flat force versus stroke curve that is very useful for high precision trajectory control to achieve soft landing within simple control algorithm.
Technical Paper

Effect of a Perforated Resonator on the Flow Performances of the Turbocharged Intake System for a Diesel Engine

2018-04-03
2018-01-0678
The flow issues of the turbocharged intake system for a diesel engine are mainly introduced in this work and the effects of a multi-chamber perforated resonator which can efficiently attenuate broadband noise and has compact structure on the flow performances of the intake system is analyzed by contrast. Based on the acoustic grid resulting from pre-processing of 3D models for finite element analysis, a computational fluid dynamics flow simulation comparative analysis between the intake systems with and without a resonator including pressure and velocity distribution is conducted with the software Star-CCM+. The simulation results indicate that the air pressure drop of the intake system with a resonator is slightly higher than that of the intake system without a resonator but it is still relatively low compared with that of the entire intake system.
Technical Paper

Optimal Study on the TL of Automotive Door Sealing System Based on the Interior Speech Intelligibility

2018-04-03
2018-01-0672
Wind noise becomes the foremost noise source when a car runs at high speeds. High frequency characteristics of wind noise source and effective performance of seal rubbers for insulating leakage noise make research on the Transmission Loss (TL) of automotive door sealing systems significant. The improvement of TL of automotive door sealing system could effectively decrease the interior noise due to wind noise for vehicles at high speeds. In this study, compression simulation of seal rubbers for an automotive door is performed through a Finite Element (FE) tool firstly. Compressed geometries of the seal rubbers are obtained. Then, based on the final compressed geometries and pre-stress modes of the automotive door seal rubbers, the TL of the whole door sealing system is acquired by hybrid Finite Element - Statistic Energy Analysis (FE-SEA) method. The fluctuating surface pressure on a car body was captured by a Computational Fluid Dynamics (CFD) tool.
Technical Paper

Development and Evaluation of the Performance Characteristics of a Poly-Disperse Droplet Stream Generator

2013-04-08
2013-01-1617
A specially designed generator has been developed to produce poly-disperse droplet streams: A liquid fuel (n-heptane) is metered to an ultrasonic atomizer to produce droplets, which are then carried and accelerated vertically upwards through a nozzle tube by carrier-air flow. Conditions of the streams at the nozzle exit are modulated by varying the length of nozzle tubes, the fuel and carrier-air flow rate. Optical measurement techniques such as direct photography method, schlieren photography and particle image velocimetry (PIV) are employed to characterize its performance characteristics. Effects of the nozzle tube length, the carrier-air and fuel flow rate are investigated to evaluate the performance of the generator. Longer nozzle tubes provide a better flow guidance for the carrier-air, and tend to generate streams with less and smaller droplets due to the transporting losses.
Technical Paper

Reducing Part Load Pumping Loss and Improving Thermal Efficiency through High Compression Ratio Over-Expanded Cycle

2013-04-08
2013-01-1744
In vehicle application, most of time gasoline engines are part load operated, especially in city traffic, part load operation covers most common operation situations, however part load performances deteriorate due to pumping losses and low thermal efficiency. Many different technologies have been applied to improve part load performances. One of them is to adopt over-expanded (Atkinson/Miller) cycle, which uses late/early intake valve closing (LIVC/EIVC) to reduce pumping losses in part load operation. But over-expanded cycle has an intrinsic drawback in that combustion performance deteriorates due to the decline in the effective compression ratio (CR). Combining with high geometry CR may be an ideal solution, however there is a trade-off between maintaining a high CR for good part load fuel consumption and maintaining optimal combustion phasing at higher load.
Technical Paper

Research into Autoignition Characteristics of Diesel Fuel in a Controllable Active Thermo-Atmosphere

2006-04-03
2006-01-0073
A novel method is applied to analysis the autoignition phenomenon. Experiments on the study of autoignition characteristics of diesel fuel were carried out with a Controllable Active Thermo-Atmosphere Combustor. The results show that the method for autoignition studying of liquid fuel is of feasibility. Autoignition delay time and autoignition height from the nozzle increase with the coflow temperature decreasing and autoignition delay time changes sensitively under lower coflow temperature. Liftoff height of diesel spray flame decreases with the increasing of coflow temperature. Lower temperature causes higher variance of liftoff height. It might be speculated that there are two different mechanisms of flame stabilization that the lower lift-off heights flames are related to a balance between the flow velocity and flame speed while the higher lift-off heights flames are stabilized by the mixture autoignition.
X