Refine Your Search

Topic

Search Results

Journal Article

Investigation on Dynamic Recovery Behavior of Boron Steel 22MnB5 under Austenite State at Elevated Temperatures

2011-04-12
2011-01-1057
Hot forming process of ultrahigh strength boron steel 22MnB5 is widely applied in vehicle industry. It is one of the most effective approaches for vehicle light weighting. Dynamic recovery is the major softening mechanism of the boron steel under austenite state at elevated temperatures. Deformation mechanism of the boron steel can be revealed by investigation on the behavior of dynamic recovery, which could also improve the accuracy of forming simulations for hot stamping. Uniaxial tensile experiments of the boron steel are carried out on the thermo-mechanical simulator Gleeble3800 at elevated temperatures. The true stress-strain curves and the relations between the work hardening rate and flow stress are obtained in different deformation conditions. The work hardening rate decreases linearly with increasing the flow stress.
Technical Paper

Instantaneous Optimization Energy Management for Extended-Range Electric Vehicle Based on Minimum Loss Power Algorithm

2013-09-08
2013-24-0073
Most of the existing energy management strategies for Extended-Range Electric Vehicles (E-REVs) are heuristic, which restricts coordination between the battery and the Range Extender. This paper presents an instantaneous optimization energy management strategy based on the Minimum Loss Power Algorithm (MLPA) for a fuel cell E-REV. An instantaneous loss power function of power train system is constructed by considering the charge and discharge efficiency of the battery, together with the working efficiency of the fuel cell Range Extender. The battery working mode and operating points of the fuel cell Range Extender are decided by an instantaneous optimization module (an artificial neural network) that aims to minimize the loss power function at each time step.
Technical Paper

Development of Composite Brake Pedal Stroke Simulator for Electro-Hydraulic Braking System

2014-04-01
2014-01-0117
A brake pedal stroke simulator for Electro-hydraulic Braking System (EHBS) was developed to ensure the comfort braking pedal feel for the brake-by-wire system. An EHBS with an integrated master cylinder was proposed, and a composite brake pedal stroke simulator was designed for the EHBS, which was comprised of two inline springs and a third parallel one. A normally closed solenoid valve was used to connect the master cylinder booster chamber and the stroke simulator. The suitable brake pedal stroke was achieved by three stages of these springs' compression, whereas the solenoid valve was shutdown to enable mechanical control of the service brakes when electrical faults appeared.
Journal Article

The Direct Methanol Fuel Cell (DMFC): Determination of Model Parameters

2008-11-11
2008-01-2856
This paper is contributed to determining model parameters for DMFCs. Theoretical evaluations are carried out to set up the relationship between the unknown and measurable parameters or variables. A laboratory-scale liquid-feed cell was simulated under different operating conditions. The resulting measurable static performance curves are used as basic information. Some key kinetic and physical parameters can be determined or estimated for a DMFC model.
Technical Paper

Elementary Investigation into Road Simulation Experiment of Powertrain and Components of Fuel Cell Passenger Car

2008-06-23
2008-01-1585
It is very important to investigate how road irregularity excitation will affect the durability, reliability, and performance degradation of fuel cell vehicle powertrain and its key components, including the electric motor, power control unit, power battery package and fuel cell engine system. There are very few published literatures in this research area. In this paper, an elementary but integrated experimental work is described, including the real road load sample on proving ground, road load reproduction on vibration test rig, total vehicle road simulation test and key components vibration tests. Remote parameter control technology is adopted to reproduce the real road load on road simulator and six-degree-of-freedom vibration table, which is used respectively for total vehicle and components vibration tests.
Technical Paper

An Interactive Racing Car Driving Simulator Based on TCP/IP

2009-05-13
2009-01-1609
Real-time interaction between a driver and the simulator is problematic. In this study, the racing car driving simulator has been established, which is composed of the following functional components: Motion Controller, Simview, Scenario Editor, Application Programmer Interface (APIs) and Crash Simulation. With TCP/IP protocol, the Motion Controller receives driver's manipulation, road unevenness and crash situation of Simview, then generates motion streams that reflecting the current conditions, and sends them to Simview and to the hydraulic platform. Furthermore, by detecting and analyzing general vehicle two-dimensional impact, a kind of complete and applicable calculation method has been established, and complicated vehicle impacts can be analyzed accurately. This racecar driving simulator places a racing driver in a interactive environment, and provides the driver with high-fidelity motion, visual, auditory, and force feedback cues.
Technical Paper

Simulation Research on Electromagnetic Radiation Effects of Electric Vehicle on the Occupant Health

2016-04-05
2016-01-0135
Nowadays researches of automotive electromagnetic field mainly focus on the component level and electromagnetic compatibility, while there is a lack of relevant studies on internal electromagnetic environment of the vehicles. With the increasingly complex internal electromagnetic environment of the vehicle, people are increasingly concerned about its potential impact of human health. This article researches on a type of electric vehicle and the occupants and analyses its electromagnetic radiation effects on human health. Firstly, considering the characters of Pro/E, Hypermesh and FEKO, the “Characteristics grouping subdivision” method is used to establish the entire vehicle body FE model. According to the requirement of MOM/FEM method, the entire vehicle model is optimized to be a high quality body model with simple construction and moderate grid size.
Technical Paper

Research on the Fatigue Durability Performance of a SUV Rear Axle

2016-04-05
2016-01-0376
The performance of the rear axle plays an important role in the performance of vehicle, and its fatigue durability is an integral part in the vehicle development. Taking a SUV model as the research subject, a new methodology of multi-channel spindle coupled road simulator and fatigue simulation analysis for rear axle assembly was introduced in the paper, aiming to address the fatigue design and its verification for the rear axle in the development phase. Firstly, road loads in the proving ground was collected by arranging proper sensors. Secondly, physical iteration was performed on the multichannel spindle coupled road simulator by taking six component forces at the wheel hub as the target signals. Then, after the time waveform replication of the loads the durability test was conducted. Finally, the validated simulation model was successfully implemented to improve the fatigue life of the axle.
Technical Paper

Interactive Modes F-ANP Evaluation for In-Vehicle Secondary Tasks

2016-09-14
2016-01-1890
With the development of automotive HMI and mobile internet, many interactive modes are available for drivers to fulfill the in-vehicle secondary tasks, e.g. dialing, volume adjustment, music playing. For driving safety and drivers’ high expectation for HMI, it is urgent to effectively evaluate interactive mode with good efficiency, safety and good user experience for each secondary tasks, e.g. steering wheel buttons, voice control. This study uses a static driving simulation cockpit to provide driving environment, and sets up a high-fidelity driving cockpit based on OKTAL SacnerStudio and three-dimensional modeling technology. The secondary tasks supported by HMI platform are designed by customer demands research. The secondary task test is carried out based on usability test theory, and the influence on driving safety by different interactive modes is analyzed.
Technical Paper

A Usability Study on In-Vehicle Gesture Control

2016-09-14
2016-01-1870
Gesture control has been increasingly applied to automotive industry to reduce the distraction caused by in-vehicle interactions to the primary task of driving. The aim of this study is to find out if gestures can reasonably be used to control in-car devices. Since there exists a big cultural difference of gesture between different countries because of its particularity, a set of gestures which support intuitive human-machine interaction in an automotive environment is searched. The results show a gesture dictionary for a variety of on-board functions, which conforms to Chinese drivers’ driving habits. Furthermore, this paper also describes a driving simulator test to evaluate the usability of gesture from different aspects including the effectiveness, efficiency, satisfaction, memorability and security. Static driving simulator is considered as an excellent environment for the in-car secondary task as its high safety level, repeatability and reliability.
Technical Paper

Effect of Road-Induced Vibration on Gas-Tightness of Vehicular Fuel Cell Stack

2016-04-05
2016-01-1186
The vehicular fuel cell stack is unavoidably impacted by the vibration in the real-world usage due to the road unevenness. However, effects of vibration on stacks have yet to be completely understood. In this work, the mechanical integrity and gas-tightness of the stack were investigated through a strengthen road vibration test with a duration of 200 h. The excitation signals applied in the vibration test were simulated by the acceleration of the stack, which were previously measured in a vehicle vibration test. The load signals of the vehicle vibration test were iterated through a road simulator from vehicle acceleration signals which were originally sampled in the proving ground. Frequency sweep test was conducted before and after the vibration test. During the vibration test, mechanical structure inspection and pressure maintaining test of the stack were conducted at regular intervals.
Technical Paper

Research on the Model of Safety Boundary Condition Based on Vehicle Intersection Conflict and Collision

2019-04-02
2019-01-0132
Because of the high frequency and serious consequences of traffic accidents in the intersection area, it is of great significance to study the vehicle conflict and collision scenarios of the intersection area. Due to few actual crash accidents occurring in naturalistic driving studies data or field operational tests data, the data of traffic accident database should be also used to analyze the intersection conflict and collision. According to the China Field Operation Test (China-FOT) database and the China in Depth Accident Study (CIDAS) database, the distribution feature of the respective intersection scenario type is obtained from the data analysis. Based on the intersection scenario type, two characters of intersection conflict and collision, the environmental character and the vehicle dynamic character, are used to analyze for the integration process of intersection conflict and collision.
Journal Article

Online Flooding and Dehydration Diagnosis for PEM Fuel Cell Stacks via Generalized Residual Multiple Model Adaptive Estimation-Based Methodology

2019-04-02
2019-01-0373
For proton exchange membrane fuel cell (PEMFC) stack, critical issues such as flooding and dehydration, are caused by improper water management. With respect to the water management failure, PEMFC stack outputs power and efficiency decreased. Therefore, proper water management with diagnosis contributes to the reliability and durability. Existing researches establish Electrochemical Impedance Spectroscopy (EIS) measurement to detect and identify different faults, whereas the sophistication, overwhelmed computational consumption of EIS and unaffordable dedicated instrumentation make it’s unsuitable for commercial application. Therefore, EIS is not considered to be a viable solution to online and real-time diagnostic scheme. In this paper, an innovative method based on EIS, is further developed to identify some critical PEMFC fault conditions online, wherein generalized residual multiple model adaptive estimation (GRMMAE) methodology is applied.
Technical Paper

DC/DC Modeling and Current Harmonic Analysis in Fuel Cell Hybrid Power System

2019-04-02
2019-01-0375
Fuel cells directly convert the energy stored in hydrogen into electrical energy through an electrochemical reaction, and the only reaction product is water, which can improve the energy efficiency and reduce the pollution caused by fossil fuels. The fuel cell hybrid power system used in vehicles usually consists of a fuel cell stack and a power battery module, and the DC/DC converter is the key component to connect them together. The current ripples caused by the system have been confirmed to have detrimental effects on the fuel cell’s reliability and lifespan. In addition, it is one of the key factors that reduce the system efficiency. So, it is necessary to analyze the current ripple in the system and maintain it at a low level. In this paper, a brief review on the different kinds of converters used in vehicles has been made. Then, with the help of MATLAB/SIMULINK, a simulation model of the hybrid power system based on 4-phase interleaved parallel topology is established.
Journal Article

A Lattice Boltzmann Simulation of Gas Purge in Flow Channel with Real GDL Surface Characteristics for Proton Exchange Membrane Fuel Cell

2019-04-02
2019-01-0389
Gas purge is considered as an essential shutdown process for a PEMFC (Proton Exchange Membrane Fuel Cell), especially in subfreezing temperature. The water flooding phenomenon inside fuel cell flow channel have a marked impact on performance in normal operating condition. In addition, the residual water freezes in the subzero temperature, thus blocking the mass transfer from flow channel to porous media. Therefore, the gas purge course is of primary importance for improvement of performance and durability. The water droplet residing in the flow channel can be purged out due to shearing force of gas. In fact, the flow channel is not completely flat due to surface roughness of gas diffusion layer (GDL), meaning the water droplet may climb over obstacles. Moreover, the water droplet may block the flow channel and then be sheared into films on the surface of GDL.
Technical Paper

Voltage and Voltage Consistency Attenuation Law of the Fuel Cell Stack Based on the Durability Cycle Condition

2019-04-02
2019-01-0386
Based on the durability cycle test of fuel cell stack and the characteristics of cyclic working conditions, this paper defines the characteristic current point and studies the attenuation rule of the fuel cell stack voltage over time under the characteristic current point. The results show that the voltage of the fuel cell stack appears to be linear downward under the characteristic current point. and the voltage attenuation rate of the fuel cell stack increases quadratically with the increase of the current density in addition to the open-circuit voltage point. Then the coefficient of variation is introduced in statistics as the index to characterize the voltage consistency attenuation of the fuel cell stack, and its variation rule is explored. The results show that the voltage consistency of vehicle fuel cell stack decreases seriously with the increase of running time under the condition of durable cycling.
Technical Paper

Genetic Algorithm-Based Parameter Optimization of Energy Management Strategy and Its Analysis for Fuel Cell Hybrid Electric Vehicles

2019-04-02
2019-01-0358
Fuel cell hybrid electric vehicles (FCHEVs) composed of fuel cells and batteries can improve the dynamic response and durability of vehicle propulsion. In addition, braking energy can be recovered by batteries. The energy management strategy (EMS) for distributing the requested power through different types of energy sources plays an important role in FCHEVs. Reasonable power split not only improves vehicle performance but also enhances fuel economy. In this paper, considering the power tracking control strategy which is widely adopted in Advanced Vehicle Simulator (ADVISOR), a constrained nonlinear programming parameter optimization model is established for minimizing fuel consumption. The principal parameters of power tracking control strategy are set as the optimized variables, with the dynamic performance index of FCHEVs being defined as the constraint condition. Then, the genetic algorithm (GA) is applied in the control strategy design for solving the optimization problem.
Technical Paper

Real-Time Testing Technology of Powertrain System in Proton Exchange Membrane Fuel Cell Electric Vehicles: A Review

2019-04-02
2019-01-0371
The proton exchange membrane fuel cell (PEMFC) vehicle is one kind of new energy vehicle with fuel cell as power source, which has environmental friendliness, high power density and quick refueling. However, the productlization testing in powertrain system, especially for subsystems and key parts, is one of the critical technical challenges, which restricts the industry development and large-scale commercialization of fuel cell electric vehicles (FCEVs). In this paper, comprehensive testing requirement and latest testing technologies were reviewed, the development status and directions of testing technologies in FCEV powertrain system were presented. Based on comprehensive analysis, X-in-the-Loop (XiL) testing technology was proposed, and it is quite helpful to improve Real-time testing performance and functions for FCEV powertrain system. Furthermore, real-time and reliability as the two key factors for the XiL application was deeply analyzed and discussed.
Journal Article

Differential Drive Assisted Steering Control for an In-wheel Motor Electric Vehicle

2015-04-14
2015-01-1599
For an electric vehicle driven by four in-wheel motors, the torque of each wheel can be controlled precisely and independently. A closed-loop control method of differential drive assisted steering (DDAS) has been proposed to improve vehicle steering properties based on those advantages. With consideration of acceleration requirement, a three dimensional characteristic curve that indicates the relation between torque and angle of the steering wheel at different vehicle speeds was designed as a basis of the control system. In order to deal with the saturation of motor's output torque under certain conditions, an anti-windup PI control algorithm was designed. Simulations and vehicle tests, including pivot steering test, lemniscate test and central steering test were carried out to verify the performance of the DDAS in steering portability and road feeling.
Technical Paper

Analysis of Geographically Distributed Vehicle Powertrain System Validation Platform Based on X-in-the-Loop Theory

2017-03-28
2017-01-1674
X-in-the-loop (XiL) framework is a validation concept for vehicle product development, which integrates different virtual and physical components to improve the development efficiency. In order to develop and validate an extended validation method based on XiL, Tongji University in Shanghai, China and the Karlsruhe Institute of Technology (KIT) in Karlsruhe, Germany co- performed a feasibility study about an X-in-the-distance-loop demonstration platform. The X-in-the-distance-loop demonstration platform includes a MATLAB/Simulink software platform and geographically distributed equipment (driver simulator, driving electric motor and dynamometer test stand), which are used to conduct bidirectional experiments to test communication of powertrain data between China and Germany.
X