Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Path Following Control for Skid Steering Vehicles with Vehicle Speed Adaption

In this paper we present a path following control design for a six-wheel skid-steering vehicle. Contrary to the common approaches that impose non-holonomic constraints, a dynamic vehicle model is established based on a pseudo-static tire model, which uses tire slip to determine tire forces. Our control system admits a modular structure, where a motion controller computes the reference vehicle yaw rate and reference vehicle speed and a dynamics controller tracks these signals. A robust nonlinear control law is designed to track the reference wheel speeds determined by the dynamics controller with proved stability properties. Saturated control techniques are employed in designing the reference yaw rate, which ensures the magnitude of the reference yaw rate does not violate the constraint from the ground-tire adhesion. The simulation results demonstrate the effectiveness of the proposed path following control design.
Technical Paper

Effect of Electrode Tabs Configuration on the Electric-Thermal Behavior of a Li-Ion Battery

This paper presents a three-dimensional electrochemical electrode plate pair model to study the effect of the electrode tabs configuration. Understanding the distribution of current density, potential and heat generation rate is critical for designing li-ion batteries and conducting effective design optimization studies. We developed several electrode plate pair models which were different in position and size of tabs. Results showed the influence and comparison of different configuration on the distribution of current density, potential density and heat generation rate at different discharge process. The distribution was predicted as a function of tabs. It can provide a theoretical basis for improving battery thermal performance and cooling system design.
Technical Paper

Numerical Investigation of Jet-Wake and Secondary Flows in a Hydrodynamic Torque Converter

Jet-wake flow and secondary flows are undesirable in torque converters as they are responsible for flow losses and flow nonuniformity; that is, jet-wake flow and secondary flows negatively affect the torque converter performance. Therefore, it is very important to investigate and minimize the undesirable flows to decrease flow losses in torque converter. However, the existing studies are limited to employ geometry design parameter modifications rather than focusing on the actual causes and intrinsic physical mechanism that generate the flows to reduce the flow losses. In this paper, Calculation model of a torque converter is presented first and a three dimensional CFD code was used to simulate the internal flow field of a torque converter. The simulation results coincide with experimental measurements, which verifies the validity of the method. Based on flow field calculation results, the internal flow field of impeller, turbine and stator were analyzed, respectively.
Technical Paper

Evaluation of Shanghai’s Industry Chain of Intelligent and Connected Vehicles Based on AHP Method

Chinese National projects “13th Five Year Plan” and “Made in China 2025” have both put forward a goal of developing Intelligent and Connected Vehicles(ICV). Shanghai is a typical city of automobile industry which spearhead the development of China’s ICV industry. After the adjustment and transition of industrial structure, Shanghai has initially formed the industrialization layout of ICV covering core areas including environmental perception, intelligent decision-making, actuator, human-computer interaction and vehicle integration. However, currently Shanghai is still in the beginning stage and there exists a large gap with world advanced level in both the core technology and marketization. This article is based on former qualitative survey combined with quantitative analysis which uses the Analytic Hierarchy Process(AHP) method to objectively evaluate the status quo and development trend of Shanghai’s ICV.
Technical Paper

Matching Design and Parameter Sensitivity Analysis of Micro Electric Vehicle Drive-motor’s Power

Micro electric vehicle has gained increasingly popularity among the public due to its compact size and reasonable price in China in recent years. Since design factors that influence the power of electric vehicle drive-motor like maximum speed, acceleration time and so on are not fixed but varies in certain scopes. Therefore, to optimize the process of matching drive-motor’s power, qualitatively and quantitatively studies should be done to determine the optimal parameter combination and improve the design efficiency. In this paper, three basic operating conditions including driving at top speed, ascending and acceleration are considered in the matching process. And the Sobol’ method of global sensitivity analysis (GSA) is applied to evaluate the importance of design factors to the drive-motor’s power in each working mode.
Technical Paper

A New Method of Comprehensive Evaluation Research and Application on Vehicle Engine Exhaust System

During current design process of vehicle engine exhaust system, the frequently-used approach mainly concerns an individual component, which usually results in not meeting the overall design requirements or unreasonable design parameters. Here a concept of comprehensive evaluation metrics for vehicle engine exhaust system was established, of which a new weight factor assignment method was proposed, named change rate method, as the core of evaluation system to be especially studied. Taking muffler as an instance, six weight factor assignment schemes were adopted to compare with each other. And the rationality and practicability of the change rate assignment method was verified by the muffler noise experiments. The results show that, the change rate method makes the weight assignment more scientific and rigorous. And the new method can reflect the wishes of designers and completely displays the performance comparison and evaluation between schemes.