Refine Your Search

Topic

Search Results

Technical Paper

Experimental Investigation on Particle Number and Size Distribution of a Common Rail Diesel Engine Fueling with Alternative Blended Diesel Fuels

2011-04-12
2011-01-0620
An EURO 3 certified common rail diesel engine was fueled with pure petroleum diesel (EURO 4 standard) and three different alternative blended diesel fuels, 10% biodiesel blended diesel (B10), 10% gas to liquid blended diesel (G10) and 10% water emulsified diesel (E10). Tests were performed at different engine speeds and load states. Particle number concentration and size distribution data were obtained from an engine exhaust particle sizer (EEPS). Over all the working conditions, total particle and nucleation mode particle number concentration among these fuels from high to low were in this order: B10, E10, pure diesel and G10. Proportions for nucleation mode particle over all the operating states in that order were 89%, 82%, 59% and 66%. Particle size distributions of B10 and E10 presented bimodal logarithmic distributions with outstanding nucleation mode peaks at all working conditions.
Technical Paper

Development and Evaluation of the Performance Characteristics of a Poly-Disperse Droplet Stream Generator

2013-04-08
2013-01-1617
A specially designed generator has been developed to produce poly-disperse droplet streams: A liquid fuel (n-heptane) is metered to an ultrasonic atomizer to produce droplets, which are then carried and accelerated vertically upwards through a nozzle tube by carrier-air flow. Conditions of the streams at the nozzle exit are modulated by varying the length of nozzle tubes, the fuel and carrier-air flow rate. Optical measurement techniques such as direct photography method, schlieren photography and particle image velocimetry (PIV) are employed to characterize its performance characteristics. Effects of the nozzle tube length, the carrier-air and fuel flow rate are investigated to evaluate the performance of the generator. Longer nozzle tubes provide a better flow guidance for the carrier-air, and tend to generate streams with less and smaller droplets due to the transporting losses.
Technical Paper

Particle-Bound PAHs Emission from a Heavy Duty Diesel Engine with Biodiesel Fuel

2013-10-14
2013-01-2573
Regulated gaseous and particulate matter (PM) emissions in the exhaust from a heavy duty diesel engine with biodiesel fuel were studied, and the emission characteristics of PM and polycyclic aromatic hydrocarbons (PAHs) emissions in PM were highlighted. In the experiment, pure diesel fuel and B10 (a blend of diesel and biodiesel fuels with the volume ratio of 9 to 1) fuel were chosen. The study shows that, compared to the pure diesel, the emissions of PM, soluble organic fractions (SOF) and PAHs from the heavy duty diesel engine decrease when the engine burns B10 fuel, and the nitrogen oxides (NOx) emission slightly increases, while the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions also decline. Among the detected 12 kinds of PAHs, emission concentrations of 10 kinds of PAHs from the engine with B10 descend. Especially Benzo(a)pyrene equivalent toxicity (BEQ) analysis results show that the BEQ of B10 fuel decreases by 15.2% compared to pure diesel.
Journal Article

Fatigue Behavior of Aluminum Alloys under Multiaxial Loading

2014-04-01
2014-01-0972
Fatigue behavior of aluminum alloys under multiaxial loading was investigated with both cast aluminum A356-T6 and wrought alloy 6063-T6. The dominant multiaxial fatigue crack preferentially nucleates from flaws like porosity and oxide films located near the free surface of the material. In the absence of the flaws, the cracking/debonding of the second phase particles dominates the crack initiation and propagation. The number of cracked/debonded particles increases with the number of cycles, but the damage rate depends on loading paths. Among various loading paths studied, the circle loading path shows the shortest fatigue life due to the development of complex dislocation substructures and severe stress concentration near grain/cell boundaries and second phase particles.
Technical Paper

Estimation of the Real Vehicle Velocity Based on UKF and PSO

2014-04-01
2014-01-0107
The unscented Kalman filter (UKF) is applied to estimate the real vehicle velocity. The velocity estimation algorithm uses lateral acceleration, longitudinal acceleration and yaw rate as inputs. The non-linear vehicle model and Dugoff tire model are built as the estimation model of UKF. Some parameters of Dugoff tire model and vehicle, which can't be measured directly, are identified by the particle swarm optimization (PSO). For the purpose of evaluating the algorithm, the estimation values of UKF are compared with measurements of the Inertial and GPS Navigation system. Besides, the real time property of UKF is tested by xPC Target, which is a real-time software environment from MathWorks. The result of the real vehicle experiment demonstrates the availability of the UKF and PSO in vehicle velocity estimation.
Technical Paper

Laboratory Investigation on Emission Characteristics of a Diesel Car Fuelled with Biodiesel Blends

2012-04-16
2012-01-1063
Based on pure diesel, pure biodiesel, and two biodiesel blends at volumetric mixture ratio of 10% and 20%, NEDC emission tests were carried out on a Euro 3-compliant diesel car. Results showed that pure biodiesel and biodiesel blends had decreasing effects on CO and HC emissions under warm-up situations, but deteriorations of CO and HC emissions were observed under cold start-up and low vehicle speed operating conditions, and this caused increasing results of CO and HC emission factors in NEDC tests when substituting pure diesel with both of pure biodiesel and biodiesel blend of 20%. Pure biodiesel aroused an increase in NOX emissions compared with pure diesel, but the two low mixture ratio biodiesel blends were observed in different increasing effects and even decreasing effects on NOX emissions. Only pure biodiesel had limited increasing effects on CO₂ emissions.
Technical Paper

Multidisciplinary Design Optimization of a Hatchback Structure

2012-04-16
2012-01-0780
Lightweight automobile has an important role in saving the energy, improving the fuel economy and reducing the exhaust emission. However, reducing the mass of the automobile need to meet the structural and NVH (Noise, Vibration and Harshness) performance requirements. With the rapid development of Computer Aided Engineering (CAE) technology, more and more people tend to research the complex engineering application problem by computer simulation. An important challenge in today's simulation is the Multidisciplinary Design Optimization (MDO) of an automobile, including mass, stiffness and modal etc. This paper presents a MDO study in a minicar hatchback.
Technical Paper

Fuel Economy and Emissions of a 7L Common Rail Diesel Engine during Torque Rise Transient Process

2015-04-14
2015-01-1068
Previous studies have indicated that longer torque increase time benefits the reduction of emissions during transient process for a diesel engine. However, quantitative conclusions on reduction of emissions and effects on fuel economy have not been made clear so far. The aim of this study was to evaluate the transient process of diesel engine under different torque increase time, and to find the quantitative statement between torque increase time, fuel economy and engine-out emissions. To do this, experiment was carried out on a 7L common rail diesel engine used for commercial vehicles. Three engine speeds (1100r·min−1, 1300r·min−1 and 1500r·min−1) were chosen to represent an engine working range. For each speed, the engine torque is increased within different time (0.5s, 1s, 2s and 5s). It was shown that, in the transient process mentioned above, engine torque increase time effects fuel economy, smoke opacity and CO emission.
Technical Paper

Effect of Piston Crevice on Transient HC Emissions of First Firing Cycle at Cold Start on LPG SI Engine

2007-10-29
2007-01-4015
By changing the top-land radial clearance, this paper presents the effect of the piston crevice on the transient HC emissions of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle. At the same time, the transient cylinder pressure and instantaneous crankshaft speed of the engine were measured and recorded. The results show that increasing 50% crevice volume leads to 25% increase of HC emissions in the lean region and 18% increase of HC emissions in the rich region, however, the 50% increase of crevice volume contributes to 32% decease of HC emissions in the stable combustion region. For LPG SI engine, the HC emissions of the first firing cycle during cold start are relatively low in a wide range of the excess air ratio.
Technical Paper

Matching Optimum for Low HC and CO Emissions at Warm-up Phase in an LPG EFI Small SI Engine

2005-10-24
2005-01-3897
Based on a 125cm3 single cylinder SI engine, the designated idle speed was controlled by adjusting of cycle ignition advance angle. By analyzing the effects of different idle speed and throttle open position on three way catalyst (TWC) light-off time and conversion efficiency of HC and CO emissions, combined with the corresponding total HC and CO emissions level, the optimum idle speed and throttle open position at engine's warm-up phase were found by the matching optimum. The present method for engine control strategy is helpful to optimize the warm-up phase emission levels in SI engine with LPG fuel.
Technical Paper

Homogeneous Charge Preparation of Diesel Fuel by Spray Impingement onto a Hot Surface at Intake Manifold

2006-10-16
2006-01-3322
A segment of steel tube with the inner diameter of 60 mm and length of 100 mm was fixed between the intake manifold and cylinder head in a direct injection natural aspirated diesel engine. The surface of the tube could be heated to be above 400 °C by the heater enwrapped outside within several minutes under the power less than 600 W. The tip of an injector traditionally used for in-cylinder diesel direct injection was extended to the axis of the tube. The diesel sprays could impinge onto the hot inner surface of the tube and atomize quickly if the temperature of the tube was high enough. Then the fuel-air mixture would be sucked into the cylinder, and HCCI combustion could be fulfilled. The vaporization ratio of the impinged diesel sprays was estimated by fuel consumption, intake air flux and excess air coefficient (λ) calculated from the volumetric concentration of O2, CO2 and CO emissions. The NOx emission was always very low.
Technical Paper

Particle Number and Size Distribution from a Diesel Engine with Jatropha Biodiesel Fuel

2009-11-02
2009-01-2726
A biodiesel fuel, obtained from Jatropha seed in China, was tested in a direct injection, high pressure common-rail diesel engine for passenger cars. Effects of biodiesel on particle number and size distribution of the diesel engine are studied using an Engine Exhaust Particle Sizer (EEPS). Base petroleum diesel fuel, 10% and 20% v/v biodiesel blends with the base petroleum diesel fuel, the biodiesel fuel (B0, B10, B20 and B100 fuels) were tested without engine modification. For all test fuels, the particle number and size distribution show unimodal or bimodal log-normal distribution, with a nucleation mode peak value in 6.04nm to 10.8nm particle diameter, and with an accumulation mode peak value in 39.2nm to 60.4nm particle diameter.
Technical Paper

Misfiring Control in Current Cycle at Engine Start Employing Ion Sensing Technology

2009-11-02
2009-01-2713
In this paper a method of misfiring control in current cycle at engine start is presented. With this novel method, the high HC emissions of gasoline engine employed in traditional or hybrid electrical vehicles will be avoided. By the feedback of ion current signal, misfire phenomenon is identified within 30 degrees crank angle after spark plug ignited. Then, the ignition coil will be recharged and the plug sparked again to promote air fuel mixture oxidation and deplete the unburned hydrocarbon produces in exhaust gas. On the other hand, too late ignition will not always result in normal combustion, a kind of reaction similar with slow oxidation also occurs in such case.
Technical Paper

Study on Improving the Fuel Economy of the Engine on EP Energy-Saving Vehicle

2008-06-23
2008-01-1780
“Soichiro Honda Cup, Honda Econo-Power Competition”, is an annual international energy-saving competition which is hosted by Honda Motor Co., Ltd. Till now it has been held 27 sessions. The aims of the EP project are: promoting the development of environmental protection, making full use of limit earth resources, challenging the fuel consumption limitation of vehicle. Tongji University's students' team has participated in the competition for seven consecutive times. In order to minimize the fuel consumption of the EP energy-saving vehicle, this paper focuses on the technical methods of improving the fuel economy of the engine. Firstly, the optimization of the carburetor. Secondly, for the purpose of improving combustion efficiency, researches on dual spark plug and compression ratio are done.
Technical Paper

Characteristics of Output Performances and Emissions of Diesel Engine Employed Common Rail Fueled with Biodiesel Blends from Wasted Cooking Oil

2008-06-23
2008-01-1833
In this paper, the characteristics of performance and emissions of diesel and biodiesel blends are studied in a four-cylinder DI engine employing common rail injection system. The results show that engine output power is further reduced and brake specific fuel consumption (BSFC) increased with the increase of the blend concentration. B100 provides average reduction by 8.6% in power and increase by 11% in BSFC. With respect to the emissions, although NOx emissions were increased with increasing the blend concentration, the increase depends on the load. Filter smoke number is reduced with increasing the blend concentration. At the same time, NO, NO2 and other specific emissions are also investigated. In addition, difference of performance and emission between standard parameters of ECU and modified parameters of ECU is investigated for B10 and B20 based on same output power. The results show that NOx emission and FSN are still lower than baseline diesel.
Technical Paper

Characteristics of Combustion and Emissions in a DI Engine Fueled with Biodiesel Blends from Soybean Oil

2008-06-23
2008-01-1832
Combustion and emission characteristics of diesel and biodiesel blends (soybean methyl ester) were studied in a single-cylinder Direct Injection (DI) engine at different loads and a constant speed. The results show that NOx emission and fuel consumption are increased with increasing biodiesel percentage. Reduction of smoke opacity is significant at higher loads with a higher biodiesel ratio. Compared with the baseline diesel fuel, B20 (20% biodiesel) has a slight increase of NOx emission and similar fuel consumption. Smoke emission of B20 is close to that of diesel fuel. Results of combustion analysis indicate that start of combustion (SOC) for biodiesel blends is earlier than that for diesel. Higher biodiesel percentage results in earlier SOC. Earlier SOC for biodiesel blends is due to advanced injection timing from higher density and bulk modulus and lower ignition delay from higher cetane number.
Technical Paper

Characteristics of Particulates and Exhaust Gases Emissions of DI Diesel Engine Employing Common Rail Fuel System Fueled with Bio-diesel Blends

2008-06-23
2008-01-1834
In this paper, characteristics of gas emission and particle size distribution are investigated in a common rail diesel engine fueled with biodiesel blends. Gas emission and particle size distribution are measured by AVL FTIR - SESAM and SMPS respectively. The results show that although biodiesel blends would result in higher NOx emissions, characteristics of NOx emissions were also dependent on the engine load for waste cooking oil methyl ester. Higher blend concentration results in higher NO2 emission after two diesel oxidation catalyst s (DOC). A higher blend concentration leads to lower CO and SO2 emissions. No significant difference of Alkene emission is found among biodiesel blends. The particle size distributions of diesel exhaust aerosol consist of a nucleation mode (NM) with a peak below 50N• m and an accumulation mode with a peak above 50N • m. B100 will result in lower particulates with the absence of NM.
Technical Paper

Characteristics of Transient NO Emissions Based on the First Firing Cycle Analysis of Cold-Start

2006-04-03
2006-01-1050
The First Firing Cycle (FFC) is very important at cold-start. Misfiring of the first firing cycle can lead to significant HC emissions and affect the subsequent cycles. This paper presents an investigation of characteristics of transient NO emissions in a small LPG SI engine with electronic gaseous injection system. To determine the optimal excess air coefficient ( λ=[A/F]/[A/F]stoic) of the first firing cycle, the emission of instantaneous NO was proposed as a useful criterion to judge if the combustion is occurred or not. A fast response NO detector- Cambustion fNOx400, based on the chemiluminescence's (CLD) method, has been employed to measure continuous, transient emissions of NO during the first firing cycle in the exhaust port of the engine. At the same time, the transient cylinder pressure, instantaneous crankshaft speed of the engine and engine-out HC emissions were measured and recorded.
Technical Paper

Effect of Additives on Diesel Spray Flames in a Controllable Active Thermo-Atmosphere

2008-04-14
2008-01-0931
The active components, such as OH and their concentrations in the coflow, have a strong effect on the combustion process of diesel fuel spray flames in the Controllable Active Thermo-Atmosphere (CATA), which then will affect the soot incandescence of the spray flames. CO2 and H2O2, the additives which have contrary effect on the concentration of the active components, were mixed separately into the thermo-atmosphere before the jet spray were issued into the coflow, which changed the boundary condition around the central jet and influenced the combustion characteristics and soot incandescence. The combustion characteristics such as ignition delay and flame liftoff height of the central spray flames are measured and the linkage between these two parameters is investigated at different coflow temperatures.
Technical Paper

The Social Economical Benefit Estimation by HEVs Application-Shanghai Case Study

2008-06-23
2008-01-1565
In this paper, a case study of Shanghai HEVs application and its effects on the social and environmental benefits are presented based on the multi views on the different aspects, such as, not only for the fuel consumption saving, but also emissions reduction and health effect, agriculture loss and cleaning cost. The results show that the potential benefits for the society from HEVs application are markedly with the increase of the ratio of HEV in the population of vehicle. Based on this, the policy to promote the HEV purchased by consumers is very important at the beginning of HEV into market.
X