Refine Your Search

Topic

Search Results

Technical Paper

Experimental Investigation on Particle Number and Size Distribution of a Common Rail Diesel Engine Fueling with Alternative Blended Diesel Fuels

2011-04-12
2011-01-0620
An EURO 3 certified common rail diesel engine was fueled with pure petroleum diesel (EURO 4 standard) and three different alternative blended diesel fuels, 10% biodiesel blended diesel (B10), 10% gas to liquid blended diesel (G10) and 10% water emulsified diesel (E10). Tests were performed at different engine speeds and load states. Particle number concentration and size distribution data were obtained from an engine exhaust particle sizer (EEPS). Over all the working conditions, total particle and nucleation mode particle number concentration among these fuels from high to low were in this order: B10, E10, pure diesel and G10. Proportions for nucleation mode particle over all the operating states in that order were 89%, 82%, 59% and 66%. Particle size distributions of B10 and E10 presented bimodal logarithmic distributions with outstanding nucleation mode peaks at all working conditions.
Technical Paper

Development and Evaluation of the Performance Characteristics of a Poly-Disperse Droplet Stream Generator

2013-04-08
2013-01-1617
A specially designed generator has been developed to produce poly-disperse droplet streams: A liquid fuel (n-heptane) is metered to an ultrasonic atomizer to produce droplets, which are then carried and accelerated vertically upwards through a nozzle tube by carrier-air flow. Conditions of the streams at the nozzle exit are modulated by varying the length of nozzle tubes, the fuel and carrier-air flow rate. Optical measurement techniques such as direct photography method, schlieren photography and particle image velocimetry (PIV) are employed to characterize its performance characteristics. Effects of the nozzle tube length, the carrier-air and fuel flow rate are investigated to evaluate the performance of the generator. Longer nozzle tubes provide a better flow guidance for the carrier-air, and tend to generate streams with less and smaller droplets due to the transporting losses.
Technical Paper

Particle-Bound PAHs Emission from a Heavy Duty Diesel Engine with Biodiesel Fuel

2013-10-14
2013-01-2573
Regulated gaseous and particulate matter (PM) emissions in the exhaust from a heavy duty diesel engine with biodiesel fuel were studied, and the emission characteristics of PM and polycyclic aromatic hydrocarbons (PAHs) emissions in PM were highlighted. In the experiment, pure diesel fuel and B10 (a blend of diesel and biodiesel fuels with the volume ratio of 9 to 1) fuel were chosen. The study shows that, compared to the pure diesel, the emissions of PM, soluble organic fractions (SOF) and PAHs from the heavy duty diesel engine decrease when the engine burns B10 fuel, and the nitrogen oxides (NOx) emission slightly increases, while the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions also decline. Among the detected 12 kinds of PAHs, emission concentrations of 10 kinds of PAHs from the engine with B10 descend. Especially Benzo(a)pyrene equivalent toxicity (BEQ) analysis results show that the BEQ of B10 fuel decreases by 15.2% compared to pure diesel.
Journal Article

Fatigue Behavior of Aluminum Alloys under Multiaxial Loading

2014-04-01
2014-01-0972
Fatigue behavior of aluminum alloys under multiaxial loading was investigated with both cast aluminum A356-T6 and wrought alloy 6063-T6. The dominant multiaxial fatigue crack preferentially nucleates from flaws like porosity and oxide films located near the free surface of the material. In the absence of the flaws, the cracking/debonding of the second phase particles dominates the crack initiation and propagation. The number of cracked/debonded particles increases with the number of cycles, but the damage rate depends on loading paths. Among various loading paths studied, the circle loading path shows the shortest fatigue life due to the development of complex dislocation substructures and severe stress concentration near grain/cell boundaries and second phase particles.
Technical Paper

Estimation of the Real Vehicle Velocity Based on UKF and PSO

2014-04-01
2014-01-0107
The unscented Kalman filter (UKF) is applied to estimate the real vehicle velocity. The velocity estimation algorithm uses lateral acceleration, longitudinal acceleration and yaw rate as inputs. The non-linear vehicle model and Dugoff tire model are built as the estimation model of UKF. Some parameters of Dugoff tire model and vehicle, which can't be measured directly, are identified by the particle swarm optimization (PSO). For the purpose of evaluating the algorithm, the estimation values of UKF are compared with measurements of the Inertial and GPS Navigation system. Besides, the real time property of UKF is tested by xPC Target, which is a real-time software environment from MathWorks. The result of the real vehicle experiment demonstrates the availability of the UKF and PSO in vehicle velocity estimation.
Technical Paper

Particle Number and Size Distribution from a Diesel Engine with Jatropha Biodiesel Fuel

2009-11-02
2009-01-2726
A biodiesel fuel, obtained from Jatropha seed in China, was tested in a direct injection, high pressure common-rail diesel engine for passenger cars. Effects of biodiesel on particle number and size distribution of the diesel engine are studied using an Engine Exhaust Particle Sizer (EEPS). Base petroleum diesel fuel, 10% and 20% v/v biodiesel blends with the base petroleum diesel fuel, the biodiesel fuel (B0, B10, B20 and B100 fuels) were tested without engine modification. For all test fuels, the particle number and size distribution show unimodal or bimodal log-normal distribution, with a nucleation mode peak value in 6.04nm to 10.8nm particle diameter, and with an accumulation mode peak value in 39.2nm to 60.4nm particle diameter.
Technical Paper

Characteristics of Particulates and Exhaust Gases Emissions of DI Diesel Engine Employing Common Rail Fuel System Fueled with Bio-diesel Blends

2008-06-23
2008-01-1834
In this paper, characteristics of gas emission and particle size distribution are investigated in a common rail diesel engine fueled with biodiesel blends. Gas emission and particle size distribution are measured by AVL FTIR - SESAM and SMPS respectively. The results show that although biodiesel blends would result in higher NOx emissions, characteristics of NOx emissions were also dependent on the engine load for waste cooking oil methyl ester. Higher blend concentration results in higher NO2 emission after two diesel oxidation catalyst s (DOC). A higher blend concentration leads to lower CO and SO2 emissions. No significant difference of Alkene emission is found among biodiesel blends. The particle size distributions of diesel exhaust aerosol consist of a nucleation mode (NM) with a peak below 50N• m and an accumulation mode with a peak above 50N • m. B100 will result in lower particulates with the absence of NM.
Technical Paper

Effect of Additives on Diesel Spray Flames in a Controllable Active Thermo-Atmosphere

2008-04-14
2008-01-0931
The active components, such as OH and their concentrations in the coflow, have a strong effect on the combustion process of diesel fuel spray flames in the Controllable Active Thermo-Atmosphere (CATA), which then will affect the soot incandescence of the spray flames. CO2 and H2O2, the additives which have contrary effect on the concentration of the active components, were mixed separately into the thermo-atmosphere before the jet spray were issued into the coflow, which changed the boundary condition around the central jet and influenced the combustion characteristics and soot incandescence. The combustion characteristics such as ignition delay and flame liftoff height of the central spray flames are measured and the linkage between these two parameters is investigated at different coflow temperatures.
Technical Paper

Thermal Management of Power Batteries for Electric Vehicles Using Phase Change Materials: A Review

2016-04-05
2016-01-1204
As one of the most crucial components in electric vehicles, power batteries generate abundant heat during charging and discharging processes. Thermal management system (TMS), which is designed to keep the battery cells within an optimum temperature range and to maintain an even temperature distribution from cell to cell, is vital for the high efficiency, long calendar life and reliable safety of these power batteries. With the desirable features of low system complexity, light weight, high energy efficiency and good battery thermal uniformity, thermal management using composite phase change materials (PCMs) has drawn great attention in the past fifteen years. In the hope of supplying helpful guidelines for the design of the PCM-based TMSs, this work begins with the summarization of the most commonly applied heat transfer enhancement methods (i.e., the use of thermally conductive particles, metal fin, expanded graphite matrix and metal foam) for PCMs by different researchers.
Technical Paper

Simulation Investigation of Working Process and Emissions on GDI Engine Fueled with Hydrous Ethanol Gasoline Blends

2019-04-02
2019-01-0219
Compared with ordinary gasoline, using ethanol gasoline blends as fuel of Internal Combustion Engine is beneficial for the performance of power, economy and emission of engine. However, the fuel ethanol blended in ethanol gasoline blends currently is usually anhydrous ethanol, which requires dewatering implementer in production process, and the cost is high. Therefore, the production cost can be significantly reduced by replacement of anhydrous ethanol with hydrous ethanol while exerting the advantage of ethanol gasoline blends. In this study, computation fluid dynamics (CFD) software CONVERGE is employed to establish a simulation model of an actual gasoline direct injection (GDI) engine, and investigate the effect of burning hydrous ethanol gasoline blends and different injection strategy on combustion process and emission, and the validity of the model was validated by experiments.
Technical Paper

The Emission of a Diesel Engine in Different Coolant Temperature during Cold Start at High Altitude

2019-04-02
2019-01-0730
Emissions of diesel engine have been received much more attention since the Volkswagen Emission Scandal. The Euro VI emission standard has already included cold start emissions in the legislative emission driving cycles which is one of the hardest part of emission control. High altitude performance is also considered in the latest regulations which will be stricter in the future. Heating the coolant is one of the most common method to improve the cold start performance. But researches focus on the emission of a diesel engine in different coolant temperature at high altitude which up to 4500m have not been seen. The present research investigated the effect of coolant temperature on performance and exhaust emissions (gaseous and particulate emissions) during the cold start of a diesel engine. A plateau simulation system controlled the inlet and exhaust pressure to create altitude environments from 0m to 4500m, and the coolant temperature was controlled from 20°C to 60°C.
Technical Paper

Experimental Study on Particulate Emission Characteristics of an Urban Bus Equipped with CCRT After-Treatment System Fuelled with Biodiesel Blend

2017-03-28
2017-01-0933
Biodiesel as a renewable energy is becoming increasingly attractive due to the growing scarcity of conventional fossil fuels. Meanwhile, the development of after-treatment technologies for the diesel engine brings new insight concerning emissions especially the particulate matter pollutants. In order to study the coupling effects of biodiesel blend and CCRT (Catalyzed Continuously Regeneration Trap) on the particulate matter emissions, the particulate matter emissions from an urban bus with and without CCRT burning BD0 and BD10 respectively was tested and analyzed using electrical low pressure impactor (ELPI). The operation conditions included steady state conditions and transient conditions. Results showed that the particulate number-size distribution of BD10 and BD0 both had two peaks in nuclei mode and accumulation mode at the conditions of idle, low speed and medium speed while at high speed condition the particulate number-size distribution only had one peak.
Technical Paper

An Improved PID Controller Based on Particle Swarm Optimization for Active Control Engine Mount

2017-03-28
2017-01-1056
Manufacturers have been encouraged to accommodate advanced downsizing technologies such as the Variable Displacement Engine (VDE) to satisfy commercial demands of comfort and stringent fuel economy. Particularly, Active control engine mounts (ACMs) notably contribute to ensuring superior effectiveness in vibration attenuation. This paper incorporates a PID controller into the active control engine mount system to attenuate the transmitted force to the body. Furthermore, integrated time absolute error (ITAE) of the transmitted force is introduced to serve as the control goal for searching better PID parameters. Then the particle swarm optimization (PSO) algorithm is adopted for the first time to optimize the PID parameters in the ACM system. Simulation results are presented for searching optimal PID parameters. In the end, experimental validation is conducted to verify the optimized PID controller.
Technical Paper

Chassis Dynamometer and On-Road Evaluations of Emissions from a Diesel-Electric Hybrid Bus

2017-03-28
2017-01-0984
Recently Hybrid Electric Buses (HEBs) have been widely used in China for energy saving and emission reduction. In order to study the real road emission performance of HEBs, the emission tests of an in-use diesel-electric hybrid bus (DHEB) are evaluated both on chassis dynamometer over China City Bus Cycles (CCBC) and on-road using Portable Emissions Measurement Systems (PEMS). The DHEB is powered by electric motor alone at speed of 0~20km/h. When the speed exceeds 20km/h, engine gets engaged rapidly and then works corporately with the electric motor to drive the bus. For chassis dynamometer test over CCBC, emissions of NOx, particulate number, particulate mass, and THC of the DHEB are 7.68g/km, 5.88E+11#/km, 0.412mg/km, and 0.062g/km, respectively. They have all decreased greatly compared to those of the diesel bus. But the CO emission which is 3.48g/km has increased significantly. Then the Real Driving Emissions (RDE) of the DHEB are compared with the dynamometer test results.
Technical Paper

Catalytic Characteristic and Application Performance of Catalyzed DPFs Coated with Various Content of Precious Metal in China

2017-10-08
2017-01-2379
Recent toxicological and epidemiologic studies have shown that diesel emissions have been a significant toxic air contaminant. Catalyzed DPF (CDPF) not only significantly reduces the PM mass emissions (>90%), but also further promotes carrier self-regeneration and oxidize more harmful gaseous pollutants by the catalyst coated on the carrier. However, some ultrafine particles and potentially harmful gaseous pollutants, such as VOCs species, originally emitted in the vapor-phase at high plume temperature, may penetrate through the CDPF filter. Furthermore, the components and content of catalyst coated on the CDPF could influence the physicochemical properties and toxicity intensity of those escaping ultrafine particles and gaseous pollutants. In this work, (1) we investigated the influence of precious metal content as a variable parameter on the physicochemical properties and catalytic activities of the small CDPF samples.
Technical Paper

Application of the Vortex Identification Algorithms in the Study of the Shear Layer in A 3/4 Open Jet Automotive Wind Tunnel

2018-04-03
2018-01-0746
By means of particle image velocimetry(PIV) measurements, this paper uses vortex identification algorithms to find and analyze the coherent structures in the shear layer region of a 1:15 scaled 3/4 open jet automotive wind tunnel with a high Reynolds number(about 106), referring to SAWTC’s AAWT. The proper orthogonal decomposition(POD) is used to process the PIV experimental data to reconstruct the velocity fields. Based on the vortex identification functions, the locations of the center, the rotation direction and the radius of vortex can be computed. Furthermore, this paper uses the statistical method to study the regularities of distribution of these vortexes in a two-dimensional plane, and identify the vortex pairing process in the shear layer region. This paper also chooses different vortex identification algorithms to find the most accurate and suitable algorithms.
Technical Paper

Effects of DOC and CDPF Catalyst Composition on Emission Characteristics of Light-Duty Diesel Engine with DOC + CDPF + SCR System

2018-04-03
2018-01-0337
With regulatory standards for diesel engine emissions becoming stricter worldwide, integrated catalytic systems are becoming increasingly necessary. One of the better approaches is to use an after-treatment system consisting of a diesel oxidation catalyst (DOC), a catalyzed diesel particulate filter (CDPF), and a selective catalytic reduction (SCR), but many factors can affect how well this system works. This study investigates the effects of DOC and CDPF catalyst composition on emissions characteristics for DOC + CDPF + SCR systems by collecting reactor and engine data. The reactor results show that the light-off temperatures (T50) of CO and C3H6 increase with the growth of Pt:Pd ratio while the T50 of NO degrades. An engine dynamometer test was conducted on a light-duty diesel engine equipped with DOC + CDPF + SCR. The results show light-off curves of CO and THC that are smoother than the reactor data.
Technical Paper

A Novel Battery Impedance Model Considering Internal Temperature Gradient

2018-04-03
2018-01-0436
Battery models are often applied to describe the dynamic characteristics of batteries and can be used to predict the state of the battery. Due to the process of charging and discharging, the battery heat generation will cause the inhomogeneity between inner battery temperature and surface temperature. In this paper, a novel battery impedance model, which takes the impact of the battery internal temperature gradient on battery impedance into account, is proposed to improve the battery model performance. Several experiments are designed and conducted for pouch typed battery to investigate the electrochemical impedance spectroscopy (EIS) characteristics with the artificial temperature gradient (using a heating plate). Experimental results indicate that the battery internal temperature gradient will influence battery EIS regularly.
Technical Paper

Comparison of Particulate Emissions of a Range Extended Electric Vehicle under Different Energy Management Strategies

2019-04-02
2019-01-1189
Range extended electric vehicles achieve significant reductions in fuel consumption by employing as an energy source a small displacement combustion engine that is optimized for high efficiency at one, or a few, operating points. The present paper examines the impact of various energy management strategies on the particulate emissions from the auxiliary power unit (APU) of a range extended electric bus, including optimized auxiliary power unit (APU) on/off strategy, single-point strategy, two-point strategy, power-following strategy and equivalent fuel consumption minimization strategy (ECMS). In addition, this paper also compares the particulate emissions of single energy storage system and composite energy storage system on single-point energy management strategy.
Technical Paper

Study on Real-World NOx and Particle Emissions of Bus: Influences of VSP and Fuel

2019-04-02
2019-01-1181
In this study, the real-world NOx and particle emissions of buses burning pure diesel fuel (D100), biodiesel fuel with 20% blend ratio (B20) and liquefied natural gas (LNG) were measured with portable emission measurement system (PEMS). The measurement conducted at 6 constant speed, which ranged from 10km/h to 60 km/h at 10km/h intervals, and a period of free driving condition. The relationship between vehicle specific power (VSP) and NOx/particle emissions of each bus were analyzed. The results show that the change rules of NOx, PN and PM emission factors with the increase of VSP were basically the same for the same bus, but for the bus using different fuel, the change rules may change. In VSP bin 0, the vehicles were mostly in idle condition and the emission factors of NOx, PN and PM of three buses were all in a relatively high level. In low VSP interval, which ranged from bin 0 to bin 4, the emissions of three buses first decreased and then increased with the growth of VSP.
X