Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Experimental Investigation of AC Pulse Heating Method for NMC Lithium-Ion Battery at Subzero Temperatures

2017-03-28
2017-01-1217
An alternating current (AC) heating method for a NMC lithium-ion battery with 8Ah capacity is proposed. The effects of excitation frequency, current amplitudes, and voltage limit condition on the temperature evolution are investigated experimentally. Current amplitudes are set to 24A(3C), 40(5C), and 64A(8C), and excitation frequencies are set to 300Hz, 100Hz, 30Hz, 10Hz, 5Hz, and 1Hz respectively. The voltage limitations are necessary to protect cells from overcharge and over-discharge. Therefore the voltage limit condition (4.2V/2.75V, 4.3V/2.65V, and 4.4V/2.55V) are also considered in depth to verify the feasibility of the AC heating method. The temperature rises prominently as the current increases, and the decrement of frequencies also lead to the obvious growth of battery temperature. The battery obtain the maximum temperature rise at 64A and 1Hz, which takes 1800s to heat up the battery from -25°C to 18°C.
Technical Paper

A Novel Battery Impedance Model Considering Internal Temperature Gradient

2018-04-03
2018-01-0436
Battery models are often applied to describe the dynamic characteristics of batteries and can be used to predict the state of the battery. Due to the process of charging and discharging, the battery heat generation will cause the inhomogeneity between inner battery temperature and surface temperature. In this paper, a novel battery impedance model, which takes the impact of the battery internal temperature gradient on battery impedance into account, is proposed to improve the battery model performance. Several experiments are designed and conducted for pouch typed battery to investigate the electrochemical impedance spectroscopy (EIS) characteristics with the artificial temperature gradient (using a heating plate). Experimental results indicate that the battery internal temperature gradient will influence battery EIS regularly.
Journal Article

Investigation on the Impact of High-Temperature Calendar and Cyclic Aging on Battery Overcharge Performance

2022-03-29
2022-01-0698
With the degradation of lithium-ion batteries, the battery safety performance changes, which further influences the safe working window. In this paper, the pouch ternary lithium-ion battery whose rated capacity is 4.2 Ah is used as the research object to investigate the impact of the high-temperature calendar and cyclic aging on tolerance performance. The overcharge-to-thermal-runaway test is performed on the fresh cell and aged cell (90% SOH). The inflection point of voltage for aged cells appears earlier than that of the fresh cell, while the voltage corresponding to the inflection point is the same for them, which means that the voltage at which lithium plating occurs is the same. However, the voltage plateau and the crest voltage before thermal runaway of aged cell are significantly higher than that of the fresh cell. Besides, ohmic heat, reversible heat, and side reaction heat make contribution to the thermal runaway triggering.
Technical Paper

Research on Charging Strategy of Lithium-ion Battery

2015-04-14
2015-01-1192
Lithium-ion battery charging strategy affects charging time of electric vehicles, energy efficiency of entire vehicle, service life and safety. This paper focuses on the lithium iron phosphate (LiFePO4) battery, based on the battery internal mechanism and the working conditions, taking charging time, effective full-charge capacity and charge energy efficiency as the evaluation indexes. Firstly, through a series of comparative experiments of the constant-current constant-voltage and the constant current charging strategy, the evaluation indexes variations in different temperatures and charging currents have been studied in the paper. By analyzing the respective characteristics of constant current charging phase and constant voltage charging phase in the whole charging process and their own contributions, we have found out the superiority of the constant current charging strategy.
Technical Paper

Effect of Electrode Tabs Configuration on the Electric-Thermal Behavior of a Li-Ion Battery

2014-04-01
2014-01-1862
This paper presents a three-dimensional electrochemical electrode plate pair model to study the effect of the electrode tabs configuration. Understanding the distribution of current density, potential and heat generation rate is critical for designing li-ion batteries and conducting effective design optimization studies. We developed several electrode plate pair models which were different in position and size of tabs. Results showed the influence and comparison of different configuration on the distribution of current density, potential density and heat generation rate at different discharge process. The distribution was predicted as a function of tabs. It can provide a theoretical basis for improving battery thermal performance and cooling system design.
Technical Paper

A Lithium-Ion Battery Optimized Equivalent Circuit Model based on Electrochemical Impedance Spectroscopy

2015-04-14
2015-01-1191
An electrochemical impedance spectroscopy battery model based on the porous electrode theory is used in the paper, which can comprehensively depict the internal state of the battery. The effect of battery key parameters (the radius of particle, electrochemical reaction rate constant, solid/electrolyte diffusion coefficient, conductivity) to the simulated impedance spectroscopy are discussed. Based on the EIS analysis, a lithium-ion battery optimized equivalent circuit model is built. The parameters in the equivalent circuit model have more clear physical meaning. The reliability of the optimized equivalent circuit model is verified by compared the model and experiments. The relationship between the external condition and internal resistance could be studied according to the optimized equivalent circuit model. Thus the internal process of the power battery is better understood.
Technical Paper

Comprehensively Investigating the Impact of High-Temperature Cyclic Aging on Thermal Runaway Characteristics for Lithium-Ion Batteries

2022-10-28
2022-01-7061
Battery safety issues have severely limited the rapid development and popularization of electric vehicles. Harsh conditions such as high temperature accelerate the degradation of battery safety. To address this issue, a comprehensive analysis of the impact of high-temperature cyclic aging on lithium-ion battery safety is carried out. In the Accelerating Rate Calorimeter, lithium-ion batteries are performed on adiabatic thermal runaway tests and overcharge tests. Regardless of the fully-charged state or half-charged state, in the adiabatic thermal runaway process, high-temperature cyclic aging reduces the characteristic temperature, and the activation energy from the self-heating temperature to thermal runaway triggering temperature decreases. During the overcharge process, high-temperature cyclic aging increases the voltage plateau and the crest voltage before thermal runaway, and their corresponding charging temperature decreases.
Technical Paper

Comparative Thermal Runaway Behavior Analysis of High-Nickel Lithium-Ion Batteries with Different Specifications

2022-03-29
2022-01-0706
High-nickel lithium-ion batteries extend the driving mileage of electric vehicles (EVs) to 600km without much cost increment. However, thermal accidents commonly occur due to their poor thermal stability, such as thermal runaway. To address the issue, a comprehensive analysis of the thermal runaway behavior of high-nickel lithium-ion batteries with different specifications is conducted. The thermal runaway process is divided into five stages based on self-heating generation, voltage drop, safety valve rupture, and thermal runaway triggering for the three tested cells. The three tested cells demonstrate similar behaviors during each stage of the thermal runaway process. However, there are still apparent differences between their characteristics. This study analyses the thermal runaway features from the following aspects: (i) characteristic temperature; (ii) the relationship between sudden voltage drop and characteristic temperatures; (iii) temperature recovery; (iv) thermodynamics.
Technical Paper

Experimental Study on Effect of State of Charge on Thermal Runaway Characteristics of Commercial Large-Format NCM811 Lithium-Ion Battery

2023-04-11
2023-01-0136
The application of Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode-based lithium-ion batteries (LIBs) has alleviated electric vehicle range anxiety. However, the subsequent thermal safety issues limit their market acceptance. A detailed analysis of the failure evolution process for large-format LIBs is necessary to address the thermal safety issue. In this study, prismatic cells with nominal capacities of 144Ah and 125Ah are used to investigate the thermal runaway (TR) characteristics triggered by lateral overheating. Additionally, TR characteristics under two states of charge (SoCs) (100% and 5%) are discussed. Two cells with 100% SoC exhibit similar characteristics, including high failure temperature, high inhomogeneity of temperature distribution, multi-points jet fire, and significant mass loss. Two cells with 5% SoC demonstrate only a slight rupture of the safety valve and the emission of white smoke.
Technical Paper

Revealing the Impact of Mechanical Pressure on Lithium-Ion Pouch Cell Formation and the Evolution of Pressure During the Formation Process

2024-04-09
2024-01-2192
The formation is a crucial step in the production process of lithium-ion batteries (LIBs), during which the solid electrolyte interphase (SEI) is formed on the surface of the anode particles to passivate the electrode. It determines the performance of the battery, including its capacity and lifetime. A meticulously designed formation protocol is essential to regulate and optimize the stability of the SEI, ultimately achieving the optimal performance of the battery. Current research on formation protocols in lithium-ion batteries primarily focuses on temperature, current, and voltage windows. However, there has been limited investigation into the influence of different initial pressures on the formation process, and the evolution of cell pressure during formation remains unclear. In this study, a pressure-assisted formation device for lithium-ion pouch cells is developed, equipped with pressure sensors.
X