Refine Your Search

Topic

Search Results

Journal Article

Optimal Design of On-Center Steering Force Characteristic Based on Correlations between Subjective and Objective Evaluations

2014-04-01
2014-01-0137
To overcome the shortcomings of subjective evaluation, there have been several studies to examine the correlations between subjective and objective evaluations of on-center steering feel, and some useful results are obtained. However, it is still not clear how to design the steering characteristic based on the correlations. In this paper, we propose a methodology of identifying the optimal on-center steering force characteristic based on the correlations between subjective and objective evaluations. Firstly, significant correlations between subjective and objective evaluations regarding on-center steering feel are established and verified. These verified correlations are then used to design the steering force characteristic. With desired ratings of the subjective evaluation items set as optimization goals, the ideal values of objective evaluation indices are obtained by use of an optimal design method.
Technical Paper

Brake Judder Induced Steering Wheel Vibration: Experiment, Simulation and Analysis

2007-10-07
2007-01-3966
The prevention and control of brake judder and its various negative effects has been a key target of vehicle production. One of the effects is the steering wheel vibration during vehicle braking. Experimental and theoretical investigation into “steering wheel vibration due to brake judder” is extensively presented in this paper. The vehicle road test is carried out under controlled braking conditions. During the test, the accelerations of brake caliper assembly, suspension low and upper control arm, steering arm, tie rod and steering wheel, left and right wheel rotary speed, are measured by a multi-channel data acquisition system. The data processing focuses on order tracking analysis and transfer path analysis to work out the related resonant components. A disc brake assembly, with deliberately designed disc thickness variation and surface run-out combinations, is tested on a brake dynamometer.
Technical Paper

Study on EP Energy-Saving Vehicle

2008-06-23
2008-01-1775
The price of fossil fuels and the increasing inexorable energy crisis have become vital issues for everyone. Tongji University EconoPower Racing Team was established to participate in the “Honda EconoPower Cup” annually. Every contestant in the competition must finish a certain distance in the fixed time, with the gasoline supplied by the committee. After that the committee will measure the fuel consumption of every team and calculate the distance per liter fuel (the farther the better) to determine the champion. In order to enhance the EP vehicle's achievement we've made some improvements, such as framework, body, engine's optimization and so on. In this passage we mainly state some details of our research approaches in framework, steering, transmission, shape and driving strategy. The main technologies were: friction reduction, lightweight, enhancement of power train efficiency, tire selection and driving strategy.
Technical Paper

An ADAS-Oriented Virtual EPS Platform Based on the Force Feedback Actuator of the Steer-by-Wire System

2016-09-14
2016-01-1905
Electric Power Steering (EPS) is the actuator of several lateral-dynamic-related Advanced Driver Assistance Systems (ADAS). A driving simulator with EPS will be much helpful for the ADAS development. However, if a real EPS is used in the driving simulator, it is quite difficult to realize the road reaction force accurately and responsively. To overcome this weakness, a virtual EPS platform is established. The virtual EPS platform contains two parts: one is the vehicle and EPS model, the other is the force feedback actuator (FFA) of the Steer-by-Wire (SBW) system. The FFA is an interface between the driver and the EPS/vehicle model. The reactive torque of the FFA is obtained based on the models. Meanwhile, the input of the EPS model is the steering angle of the FFA. Comparing to a real EPS, the virtual EPS platform has a problem of instability because of the actuator lag of the FFA. Therefore, a damping control method is applied to make the system stable.
Technical Paper

Path-Tracking Controller Design for a 4WIS and 4WID Electric Vehicle with Steer-by-Wire System

2017-09-23
2017-01-1954
Path tracking is the rudimentary capability and primary task for autonomous ground vehicles (AGVs). In this paper, a novel four-wheel-independent-steering (4WIS) and four-wheel-independent-drive (4WID) electric vehicle (EV) is proposed which is equipped with steer-by-wire (SBW) system. For path-tracking controller design, the nonlinear vehicle model with 2 degrees of freedom (DOF) is built utilizing the nonlinear Dugoff tire model. The nonlinear dynamic model of SBW system is conducted as well considering the external disturbances. As to the path-tracking controller design, an integrated four-wheel steering (4WS) and direct yaw-moment control (DYC) system is designed based on the model predictive control (MPC) algorithm to track the target path described by desired yaw angle and lateral displacement. Then, the fast terminal sliding mode controller (FTSMC) is proposed for the SBW system to suppress disturbances.
Technical Paper

Driver Lane Keeping Characteristic Indices for Personalized Lane Keeping Assistance System

2017-09-23
2017-01-1982
In the recent years, the interaction between human driver and Advanced Driver Assistance System (ADAS) has gradually aroused people’s concern. As a result, the concept of personalized ADAS is being put forward. As an important system of ADAS, Lane Keeping Assistance System (LKAS) also attracts great attention. To achieve personalized LKAS, driver lane keeping characteristic (DLKC) indices which could distinguish different driver lane keeping behavior should be researched. However, there are few researches on DLKC indices for personalized LKAS. Although there are many researches on modeling driver steering behavior, these researches are not sufficient to obtain DLKC indices. One reason is that most of researches are for double lane change behavior which is different from driver lane keeping behavior. The other reason is that the researches on driver lane keeping behavior only provide model structure and rarely discuss identification procedure such as how to select suitable data.
Technical Paper

Research on a New Electromagnetic Valve Actuator Based on Voice Coil Motor for Automobile Engines

2017-03-28
2017-01-1070
The electromagnetic valve actuator (EMVA) is considered a technological solution for decoupling between crankshaft and camshaft to improve engine performance, emissions, and fuel efficiency. Conventional EMVA consists of two electromagnets, an armature, and two springs has been proved to have the drawbacks of fixed lift, impact noise, complex control method and large power consumption. This paper proposes a new type of EMVA that uses voice coil motor (VCM) as electromagnetic valve actuator. This new camless valvetrain (VEMA) is characterized by simple structure, flexible controllable and low actuating power. VCM provides an almost flat force versus stroke curve that is very useful for high precision trajectory control to achieve soft landing within simple control algorithm.
Technical Paper

Vehicle Sideslip Angle Estimation Considering the Tire Pneumatic Trail Variation

2018-04-03
2018-01-0571
Vehicle sideslip angle is significant for electronic stability control devices and hard to estimate due to the nonlinear and uncertain vehicle and tire dynamics. In this paper, based on the two track vehicle dynamic model considering the tire pneumatic trail variation, the vehicle sideslip angle estimation method was proposed. First, the extra steering angle of each wheel caused by kinematics and compliance characteristics of the steering system and suspension system was analyzed. The steering angle estimation method was designed. Since the pneumatic trail would vary with different tire slip angle, distances between the center of gravity (COG) and front&rear axle also change with the tire slip angle. Then, based on the dynamic pneumatic trail and estimated steering angle, we modified the traditional two track vehicle dynamic model using a brush tire model. This model matches the vehicle dynamics more accurately.
Technical Paper

Emergency Steering Evasion Control by Combining the Yaw Moment with Steering Assistance

2018-04-03
2018-01-0818
The coordinated control of stability and steering systems in collision avoidance steering evasion has been widely studied in vehicle active safety area, but the studies are mainly aimed at autonomous vehicle without driver or conventional combustion engine vehicle. This paper focuses on the control of hybrid vehicle integrated with rear hub in emergency steering evasion situation, and considering the driver’s characteristics. First, the mathematics model of vehicle dynamics and driver has been given. Second, based on the planned steering evasion path, the model predictive control method is presented for achieving higher evasion path tracking accuracy under driver’s steering input. The prediction model includes an adaptive preview distance driver model and a vehicle dynamics model to predict the driver input and the vehicle trajectory.
Journal Article

A Potential Field Based Lateral Planning Method for Autonomous Vehicles

2016-09-14
2016-01-1874
As one of the key technologies in autonomous driving, the lateral planning module guides the lateral movement during the driving process. An integrated lateral planning module should consider the non-holonomic constraints of a vehicle, the optimization of the generated trajectory and the applicability to various scenarios. However, the current lateral planning methods can only meet parts of these requirements. In order to satisfy all the performance requirements above, a novel Potential Field (PF) based lateral planning method is proposed in this paper. Firstly, a PF model is built to describe the potential risk of the traffic entities, including the obstacles, road boundaries and lines. The potential fields of these traffic entities are determined by their properties and the traffic regulations. Secondly, the planning algorithm is presented, which comprises three modules: state prediction, state search and trajectory generation.
Technical Paper

Construction and Test of Wireless Remote Control System for Self-Driving Car

2022-03-29
2022-01-0064
Aiming at the test safety problems in the early stage of self-driving cars development, firstly the virtual vehicle on-board CAN data acquisition module of the present project was designed based on virtual LabVIEW. Then a wireless remote control system for the self-driving car was constructed, which integrated the built virtual vehicle on-board CAN data acquisition system, the remote real-time image monitoring module and the remote upper computer control module based on ZigBee wireless transmission. It can execute the environmental awareness training and continuous and complex motion manipulation testing of the vehicle without relying on the driver, which can solve the safety problems in the tests of initial development of self-driving cars. Finally, the four-wheel independent steering electric vehicle was used as the self-driving test vehicle, and the wireless remote control system was tested on the double lane change type path and S-type path.
Technical Paper

Efficient Trajectory Planning for Tractor-Trailer Vehicles with an Incremental Optimization Solving Algorithm

2022-03-29
2022-01-0138
A tractor-trailer vehicle (TTV) consists of an actuated tractor attached with several full trailers. Because of its nonlinear and noncompleted constraints, it is a challenging task to avoid collisions for path planner. In this paper, we propose an efficient method to plan an optimal trajectory for TTV to reach the destination without any collision. To deal with the complicated constraints, the trajectory planning problem is formulated as an optimal control problem uniformly, which can be solved by the interior point method. A novel incremental optimization solving algorithm (IOSA) is proposed to accelerate the optimization process, which makes the number of trailers and the size of obstacles increase asynchronously. Simulation experiments are carried out in two scenarios with static obstacles. Compared with other methods, the results show that the planning method with IOSA outperforms in the efficiency.
Journal Article

Nonlinear Model Predictive Control of Autonomous Vehicles Considering Dynamic Stability Constraints

2020-04-14
2020-01-1400
Autonomous vehicle performance is increasingly highlighted in many highway driving scenarios, which leads to more priorities to vehicle stability as well as tracking accuracy. In this paper, a nonlinear model predictive controller for autonomous vehicle trajectory tracking is designed and verified through a real-time simulation bench of a virtual test track. The dynamic stability constraints of nonlinear model predictive control (NLMPC) are obtained by a novel quadrilateral stability region criterion instead of the conventional phase plane method using the double-line region. First, a typical lane change scene of overtaking is selected and a new composited trajectory model is proposed as a reference path that combines smoothness of sine wave and comfort of linear functional path. Reference lateral velocity, azimuth angle, yaw rate, and front wheel steering angle are subsequently taken into account.
Technical Paper

Probabilistic Vehicle Trajectory Prediction Based on LSTM Encoder-Decoder and Attention Mechanism

2022-12-22
2022-01-7106
In order to realize driving safety in highway scenarios, autonomous vehicles need to predict and reason about the driving intentions and motion trajectories of surrounding target vehicles in the near feature. Essentially, trajectory prediction of target vehicles can be viewed as a typical time series generation problem, which predicts the future trajectory of the vehicle through analyzing the input of historical trajectory information or its control signals. In actual traffic scenarios, the movement between vehicles is a process of mutual game and cooperation, namely the future trajectory of a vehicle is not only related to its own historical trajectory, but also to surrounding vehicles motion. However, different surrounding traffic participants have different influence on the target vehicle, and the future motion of the vehicle is often affected by some specific surrounding traffic agents deeply.
Technical Paper

Object Detection and Tracking Based on Lidar for Autonomous Vehicles on Highway Conditions

2022-12-22
2022-01-7103
Multiple object detection and tracking are central aspects of modeling the environment of autonomous vehicles. Lidar is a necessary component in the autonomous driving system. Without Lidar sensors, we will most probably not see fully self-driving cars become a reality. Lidar sensing gives us high-resolution data by sending out thousands of laser signals. In advanced driver assistance systems or automated driving systems, 3-D point clouds from lidar scans are typically used to measure physical surfaces. Lidar is a powerful sensor that you can use in challenging environments where other sensors might prove inadequate. Lidar can provide a complete 360-degree view of a scene. This paper designs Lidar based multi-target detection and tracking system based on the traditional point cloud processing method including down-sampling, denoising, segmentation, and clustering objects.
Technical Paper

Research on the Occupant Discomfort due to Safety Perception in Overtaking Scenarios

2022-12-22
2022-01-7089
With the widespread application of autonomous driving technology, occupant comfort has become a key topic. Occupant comfort of autonomous vehicles depends on the driving system’s performance, so studying the causes of occupant discomfort will help design driving systems. In addition to the discomfort in NVH and thermal comfort, occupant comfort is also affected by other factors such as safety perception. To study the impact of safety perception on comfort, this paper designed a road experiment and focused on the overtaking scenarios. Because the interaction between the ego vehicle and others is strong during overtaking, the occupants are more likely to receive visual stimuli, resulting in discomfort caused by safety perception. In the experiment, occupant discomfort scores were collected in real-time by the tool developed in this paper.
Technical Paper

Perception-Aware Path Planning for Autonomous Vehicles in Uncertain Environment

2022-12-22
2022-01-7077
Recent researches in autonomous driving mainly consider the uncertainty in perception and prediction modules for safety enhancement. However, obstacles which block the field-of-view (FOV) of sensors could generate blind areas and leaves environmental uncertainty a remaining challenge for autonomous vehicles. Current solutions mainly rely on passive obstacles avoidance in path planning instead of active perception to deal with unexplored high-risky areas. In view of the problem, this paper introduces the concept of information entropy, which quantifies uncertain information in the blind area, into the motion planning module of autonomous vehicles. Based on model predictive control (MPC) scheme, the proposed algorithm can plan collision-free trajectories while actively explore unknown areas to minimize environmental uncertainty. Simulation results under various challenging scenarios demonstrate the improvement in safety and comfort with the proposed perception-aware planning scheme.
Technical Paper

Lane Changing Comfort Trajectory Planning of Intelligent Vehicle Based on Particle Swarm Optimization Improved Bezier Curve

2023-12-31
2023-01-7103
This paper focuses on lane-changing trajectory planning and trajectory tracking control in autonomous vehicle technology. Aiming at the lane-changing behavior of autonomous vehicles, this paper proposes a new lane-changing trajectory planning method based on particle swarm optimization (PSO) improved third-order Bezier curve path planning and polynomial curve speed planning. The position of Bezier curve control points is optimized by the particle swarm optimization algorithm, and the lane-changing trajectory is optimized to improve the comfort of lane changing process. Under the constraints of no-collision and vehicle dynamics, the proposed method can ensure that the optimal lane-changing trajectory can be found in different lane-changing scenarios. To verify the feasibility of the above planning algorithm, this paper designs the lateral and longitudinal controllers for trajectory tracking control based on the vehicle dynamic tracking error model.
Journal Article

Robust Control of a Four-Wheel-Independent-Steering Electric Vehicle for Path Tracking

2017-03-28
2017-01-1584
Compared with the traditional front-wheel- steering (FWS) vehicles, four-wheel-independent-steering (4WIS) vehicles have better handing stability and path-tracking performance. In view of this, a novel 4WIS electric vehicle (EV) with steer-by-wire (SBW) system is proposed in this paper. As to the 4WIS EV, a linear quadratic regulator (LQR) optimal controller is designed to make the vehicle track the target path based on the linear dynamic model. Taking the effect of uncertainties in vehicle parameters into consideration, a robust controller utilizing μ synthesis approach is designed and the controller order reduction is implemented based on Hankel-Norm approximation. In order to evaluate the performance of the designed controllers, numerical simulations of two maneuvers are carried out using the nonlinear vehicle model with 9 degrees of freedom (DOF) in MATLAB/Simulink.
Technical Paper

An Outer Loop of Trajectory and an Inner Loop of Steering Angle for Trajectory Tracking Control of Automatic Lane Change System

2019-11-04
2019-01-5029
Automatic Lane Change (ALC) function is an important step to promote the currently popular Advanced Driver Assistance Systems (ADAS) within a single lane. The key issue for ALC is accurate steering angle and trajectory tracking during the lane changing process. In this paper, an MPC controller with a receding horizon is designed to track the desired trajectory. During the tracking process, other objectives such as safety and smoothness are considered. Considering of the practical mechanism and parameter uncertainties, an SMC controller is designed to track the target steering angle. For validation, a Hardware-in-the-Loop (HIL) experiment platform is established, and experiments of different control algorithms under different conditions are carried out successively. Comparisons of the experiment results of MPC+SMC and PID+SMC schemes indicate that both the trajectory error and the steering angle error of the former combination are smaller.
X