Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

A Development And Test Environment for Automotive LIN Network

2008-06-23
2008-01-1519
“LIN-BOX” is designed as a development tool for simulation, implementation and test of the automotive LIN (Local Interconnect Network) control devices or entire network. The tool can be used to simulate master and/or slaves around LIN system. The configurable signal processing makes it possible to simulate and test the communication behavior. LIN-BOX monitors the bus traffic in the vehicle. The data on LIN bus can not only be shown on various windows but also written into log files. LIN-BOX has been used by several cases for debugging and validation, the result shows that it is a powerful tool for LIN cluster design, simulation and test.
Technical Paper

Fault-Tolerant Ability Testing for Automotive Ethernet

2018-04-03
2018-01-0755
With the introduction of BroadR-Reach and time-sensitive networking (TSN), Ethernet has become an option for in-vehicle networks (IVNs). Although it has been used in the IT field for decades, it is a new technology for automotive, and thus requires extensive testing. Current test solutions usually target specifications rather than the in-vehicle environment, which means that some properties are still uncertain for in-vehicle usage (e.g., fault tolerance for shorted or open wires). However, these characteristics must be cleared before applying Ethernet in IVNs, because of stringent vehicular safety requirements. Because CAN is usually used for these environments, automotive Ethernet is expected to have the same or better level of fault tolerance. Both CAN and BroadR-Reach use a single pair of twisted wires for physical media; thus, the traditional fault-tolerance test method can be applied for automotive Ethernet.
Technical Paper

A Trust Establishment Mechanism of VANETs based on Fuzzy Analytical Hierarchy Process (FAHP)

2022-03-29
2022-01-0142
As the connectivity of vehicles increases rapidly, more vehicles have the capability to communicate with each other. Because Vehicular Ad-hoc NETworks (VANETs) have the characteristics of solid mobility and decentralization, traditional security strategies such as authentication, firewall, and access control are difficult to play an influential role. As a soft security method, trust management can ensure the security attributes of VANETs. However, the rapid growth of newly encountered nodes of the trust management system also increases the requirements for trust establishing mechanisms. Without a proper trust establishment mechanism, the trust value of the newly encountered nodes will deviate significantly from its actual performance, and the trust management system will suffer from newcomer attacks.
Technical Paper

Research on Performance Testing and Evaluation System of Vehicle Time Sensitive Network

2023-04-11
2023-01-0923
In recent years, intelligent connected vehicle has become an important direction for future automotive research and development. In-vehicle Time-Sensitive Network is the core communication technology of ICV, and network performance test is a necessary step in the development process. Therefore, this paper studies the Time-Sensitive Network performance test system. Firstly, a Time-Sensitive Network performance test framework is designed, and a test scheme is formulated. Then, a control method that can flexibly configure the network topology is proposed. Finally, the physical verification of the system is carried out, and the influence of factors such as network topology, message frame length and communication frequency on the network communication performance is analyzed, which proves the reliability of the system.
Technical Paper

Security Mechanisms Design of Automotive Gateway Firewall

2019-04-02
2019-01-0481
Automotive security has become one of important topics in recent years under new automotive Electronic and Electrical Architecture (EEA). With the development of Intelligent Connected Vehicle (ICV), it has become possible to hack an automotive through in-vehicle networks. The introduction of Information Communications Technology (ICT) brings more risk threats to automotive. Researchers have shown that an attacker can easily tamper with many automotive functions via On-Board Diagnostic II (OBD-II) or In-Vehicle Infotainment (IVI). In order to protect automotive against malicious attacks, automotive security risks were analyzed and then security mechanisms based on network firewall were designed in this paper. Automotive network firewall is a security system that monitors and controls incoming and outgoing network traffics of automotive based on predetermined security rules. The main functions of network firewall include packet filter, anti-DoS and access control.
Technical Paper

Routing and Security Mechanisms Design for Automotive TSN/CAN FD Security Gateway

2022-03-29
2022-01-0113
With the explosion of in-vehicle data, Time Sensitive Network (TSN) is increasingly becoming the backbone of the in-vehicle network to ensure deterministic real-time communication and Quality of Service (QoS). However, legacy buses such as CAN FD and LIN will not disappear for a long time in the future. Many protocols are deployed in the gateway and it is an important component in the security and functional safety of the communication process. In this paper, the recommended Electrical/Electronic Architecture is first given and the use cases for the TSN/CAN FD gateway are illustrated. Then, a TSN/CAN FD routing mechanism is designed and security mechanisms are deployed. The routing mechanism includes the protocol conversion module, queue cache module, and forwarding scheduling module. The protocol conversion module unpacks or packs the TSN or CAN FD frames according to the routing table.
Technical Paper

Research on CAN FD Controller Conformance Test System

2019-11-04
2019-01-5073
The Controller Area Network with Flexible Data-Rate (CAN FD) is invented to compensate for the limited bandwidth of Controller Area Network (CAN). The technology of CAN FD bus conformance test is a prerequisite for the interconnection and normal work of different manufacturers’ CAN FD module, and is of great significance for ensuring the reliability of the CAN FD network. Firstly, the communication protocol conformance test theory is briefly analyzed and the characteristics of the CAN FD protocol are introduced in this paper. Then the test scope and test objects of CAN FD conformance test are pointed out. This paper mainly focuses on the CAN FD controller conformance test, which is belong to chip test. The controller implements the most parts of data link layer in a CAN FD module. Furthermore, the test method and the test cases are elaborated. Based on the coordinated test method, a conformance test system is designed and the hardware and software are developed for the test system.
Technical Paper

Security Mechanisms Design for In-Vehicle Network Gateway

2018-04-03
2018-01-0018
In the automotive network architecture, the basic functions of gateway include routing, diagnostic, network management and so on. With the rapid development of connected vehicles, the cybersecurity has become an important topic in the automotive network. A spoof ECU can be used to hack the automotive network. In order to prevent the in-vehicle networks from attacking, the automotive gateway is an important part of the security architecture. A secure gateway should be able to authenticate the connected ECU and control the access to the critical network domain. The data and signals transferred between gateway and ECUs should be protected to against wiretap attacking. The purpose of this paper is to design a secure gateway for in-vehicle networks. In this paper, the designing process of the automotive secure gateway is presented. Based on the threat analysis, security requirements for automotive gateway are defined.
Technical Paper

Simulative Assessments of Cyclic Queuing and Forwarding with Preemption in In-Vehicle Time-Sensitive Networking

2024-04-09
2024-01-1986
The current automotive industry has a growing demand for real-time transmission to support reliable communication and for key technologies. The Time-Sensitive Networking (TSN) working group introduced standards for reliable communication in time-critical systems, including shaping mechanisms for bounded transmission latency. Among these shaping mechanisms, Cyclic Queuing and Forwarding (CQF) and frame preemption provide deterministic guarantees for frame transmission. However, despite some current studies on the performance analysis of CQF and frame preemption, they also need to consider the potential effects of their combined usage on frame transmission. Furthermore, there is a need for more research that addresses the impact of parameter configuration on frame transmission under different situations and shaping mechanisms, especially in the case of mechanism combination.
Technical Paper

Vulnerability analysis of DoIP implementation based on model learning

2024-04-09
2024-01-2807
The software installed in Electronic Control Units (ECUs) has witnessed a significant scale expansion as the functionality of Intelligent Connected Vehicles (ICVs) has become more sophisticated. To seek convenient long-term functional maintenance, stakeholders want to access ECUs data or update software from anywhere via diagnostic. Accordingly, as one of the external interfaces, Diagnostics over Internet Protocol (DoIP) is inevitably prone to malicious attacks. It is essential to note that cybersecurity threats not only arise from inherent protocol defects but also consider software implementation vulnerabilities. When implementing a specification, developers have considerable freedom to decide how to proceed. Differences between protocol specifications and implementations are often unavoidable, which can result in security vulnerabilities and potential attacks exploiting them.
X