Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Optimization Design of Rear-Engine Bus Cooling System Based on 1D/3D Coupling Simulation

2018-04-03
2018-01-0771
This study investigated the effects of underhood structure parameters (two types of air ducts, two types of inlet grilles and the opening angle of inlet grilles) on the cooling characteristics of the rear-engine bus; then, the optimum design scheme of the underhood was determined. The air-side resistance load of the cooling system, which is based on fan performance, was selected as the optimization objective. Simulations were created based on a porous media model and standard a k-ε model. The next step was to build a 1D/3D coupling simulation to utilize the advantages of 1D simulation’s fast convergence speed and 3D simulation’s extensive research range. Besides, the use of 1D/3D coupling simulation can efficiently avoid the errors of simulation results which arise from the non-uniform airflow on the cooling module. Results show that the airflow rate of the rectangular air duct increased by 7 to 11percent.
Technical Paper

Simulation of the Internal Flow and Cavitation of Hydrous Ethanol-Gasoline Fuels in a Multi-Hole Direct Injector

2022-03-29
2022-01-0501
Hydrous ethanol not only has the advantages of high-octane number and valuable oxygen content, but also reduce the energy consumption in the production process. However, little literature investigated the internal flow and cavitation of hydrous ethanol-gasoline fuels in the multi-hole direct injector. In this simulation, a two-phase fuel flow model in injector is established based on the multi-fluid model of Euler-Euler method, and the accuracy of model is verified. On the basis of this model, the flow of different hydrous ethanol-gasoline blends is calculated under different injection conditions, and the cavitation, flow rate, and velocity at the outlet of the nozzle are predicted. Meanwhile, the influence of temperature and back pressure on the flow is also analyzed. The results show that the use of hydrous ethanol reduces the flow rate, compared with the velocity of E0, that of E10w, E20w, E50w, E85w, and E100w decreases by 10%, 12.9%, 17.6%, 20%, and 23.5%, respectively.
Technical Paper

Assessing the Effects of Computational Model Parameters on Aerodynamic Noise Characteristics of a Heavy-Duty Diesel Engine Turbocharger Compressor at Full Operating Conditions

2024-04-09
2024-01-2352
In recent years, with the development of computing infrastructure and methods, the potential of numerical methods to reasonably predict aerodynamic noise in turbocharger compressors of heavy-duty diesel engines has increased. However, aerodynamic acoustic modeling of complex geometries and flow systems is currently immature, mainly due to the greater challenges in accurately characterizing turbulent viscous flows. Therefore, recent advances in aerodynamic noise calculations for automotive turbocharger compressors were reviewed and a quantitative study of the effects for turbulence models (Shear-Stress Transport (SST) and Detached Eddy Simulation (DES)) and time-steps (2° and 4°) in numerical simulations on the performance and acoustic prediction of a compressor under various conditions were investigated.
X