Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Starting Process Control of a 2-Cylinder PFI Gasoline Engine for Range Extender

2020-04-14
2020-01-0315
With the increasing worldwide concern on environmental pollution, battery electrical vehicles (BEV) have attracted a lot attention. However, it still couldn’t satisfy the market requirements because of the low battery power density, high cost and long charging time. The range-extended electrical vehicle (REEV) got more attention because it could avoid the mileage anxiety of the BEVs with lower cost and potentially higher efficiency. When internal combustion engine (ICE) works as the power source of range extender (RE) for REEV, its NVH, emissions in starting process need to be optimized. In this paper, a 2-cylinder PFI gasoline engine and a permanent magnet synchronous motor (PMSM) are coaxially connected. Meanwhile, batteries and load systems were equipped. The RE co-control system was developed based on Compact RIO (Compact Reconfigurable IO), Labview and motor control unit (MCU).
Technical Paper

An Online Fault Detection and Isolation Method for Permanent Magnet Synchronous Machine

2018-04-03
2018-01-0451
An online fault detection and isolation (FDI) method for several common sensor faults and even demagnetization of PMSM is proposed by combining model-based and signal analysis technology. To begin with, the field reconstruction method (FRM) of PMSM is employed to obtain the flux residuals which are used as the criterion of fault detection. Then, the flux residuals are transformed by multi sequence harmonic synchronous rotating transformation and inputted into low pass filters (LPFs) in order to obtain the DC components. Last, offset and gain faults of the two phase current sensors, offset fault of the rotor angle sensor and permanent magnet (PM) demagnetization can be isolated by comparing the DC components and preset thresholds. The detection and isolation strategy of PMSM is validated by motor controller hardware in motor bench tests.
Technical Paper

Model Based CAE Technology for the Development of Automotive Embedded Distributed Control System

2005-02-01
2005-01-3133
Automotive embedded DCS is widely used to solve automotive control problems. This paper presents a model-driven development technology for such systems. Models of automotive embedded DCS are built up strictly complying with the four-layer-model architecture, which is presented by Model-Driven Architecture (MDA). Three kinds of models are used to describe the protocol data structure, the algorithm process and visualization aspects of automotive embedded DCS. Corresponding XML databases are created based upon these models. As a single data source, these databases play key roles in further development phases, including generating the protocol specification, MC&D systems and embedded programming, etc. Some demonstrative applications are presented in this paper.
Technical Paper

Analysis of the Statistical Energy Consumption and Its Application to an Economic Evaluation of Plug-In Hybrid Electric Vehicles

2019-04-02
2019-01-0933
The energy consumption depends not only on the structures of vehicles but also on their operating conditions. For vehicles with the same structure, the operating conditions will vary from driver to driver. In this paper, considering the difference of operating conditions, the concept of statistical energy consumption is proposed to reveal the statistical law of actual vehicle energy consumption. In this paper, a plug-in hybrid electric vehicle (PHEV) is taken as the research object. Based on the distribution law of three vehicle use factors, i.e. vehicle mass, daily driving distance and driving aggression, Monte Carlo method is used to simulate and calculate the statistical energy consumption and statistical comprehensive energy consumption. Then, the energy consumption values that only considered the daily driving distance is calculated.
Technical Paper

Optimization of Speed Fluctuation of Internal Combustion Engine Range Extender by a Dual Closed-Loop Control Strategy

2021-04-06
2021-01-0782
With the increasing concern on environmental pollution and CO2 emission all over the world, range-extended electrical vehicle (REEV) has gradually got more attention because it could avoid the mileage anxiety of the battery electrical vehicles (BEV) and get high energy efficiency. Nevertheless, NVH performance of internal combustion engine range extender (ICRE) is a critical problem that affects the driving experiences for REEV. In this paper, a two-cylinder PFI gasoline engine and a permanent magnet synchronous motor (PMSM) are coaxially mounted to run as an ICRE. The ICRE control system was established based on Compact RIO hardware and LabVIEW, who has the functions of the intake throttle PID closed-loop control, autonomous ICRE operation control, and speed PID closed-loop control. In this paper, the gasoline engine was first driven to the idle condition by PMSM in speed-control mode.
X