Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Energy Enhanced Adaptive Spark Ignition for Lean Combustion Initiation

2020-04-14
2020-01-0841
For internal combustion engine systems, lean and diluted combustion is an important technology applied for fuel efficiency improvement. Because of the thermodynamic boundary conditions and the presence of in-cylinder flow, the development of a well-sustained flame kernel for lean combustion is a challenging task. Reliable spark discharge with the addition of enhanced delivered energy is thus needed at certain time durations to achieve successful combustion initiation of the lean air-fuel mixture. For a conventional transistor coil ignition system, only limited amount of energy is stored in the ignition coil. Therefore, both the energy of the spark discharge and the duration of the spark discharge are bounded. To break through the energy limit of the conventional transistor coil ignition system, in this work, an adaptive spark ignition system is introduced. The system has the ability to reconstruct the conductive ion channels whenever it is interrupted during the spark discharge.
Technical Paper

Parametric Analysis of Ignition Circuit Components on Spark Discharge Characteristics

2016-04-05
2016-01-1011
The development of the present day spark ignition (SI) engines has imposed higher demands for on-board ignition systems. Proper design of the ignition system circuit is required to achieve certain spark performances. In this paper, the authors studied the relationship between spark discharge characteristics and different inductive spark ignition circuit parameters with the help of a simplified circuit model. The circuit model catches the principle behavior of the spark discharge process. Simulation results obtained from the model were compared with experimental data for model verification. Different circuit model parameters were then tuned to study the effect of those on spark discharge current and spark energy properties. The parameters studied include the ignition coil coupling coefficient, ignition coil primary and secondary inductances, secondary circuit series resistance and spark plug gap width.
Technical Paper

Improvement on Energy Efficiency of the Spark Ignition System

2017-03-28
2017-01-0678
Future clean combustion engines tend to increase the cylinder charge to achieve better fuel economy and lower exhaust emissions. The increase of the cylinder charge is often associated with either excessive air admission or exhaust gas recirculation, which leads to unfavorable ignition conditions at the ignition point. Advanced ignition methods and systems have progressed rapidly in recent years in order to suffice the current and future engine development, and a simple increase of energy of the inductive ignition system does not often provide the desired results from a cost-benefit point of view. Proper design of the ignition system circuit is required to achieve certain spark performances.
X