Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of New 1.8-Liter Engine for Hybrid Vehicles

2009-04-20
2009-01-1061
In recent years, attention has been focused on a hybrid vehicle capable of substantial reductions in CO2 exhaust emissions. This paper describes the newly developed 1.8-liter 2ZR-FXE gasoline engine for use with a hybrid system for compact vehicles, which effectively combines higher driving performance with higher fuel efficiency. This engine was based on the 1.8-liter 2ZR-FE engine with outstanding performance and fuel efficiency. This engine has achieved high thermal efficiency by using the high-expansion ratio cycle “Atkinson cycle”, as with the previous 1NZ-FXE engine. Additionally, a new cooled Exhaust Gas Recirculation (EGR) system and electric water pump were adopted to further improve fuel efficiency. A high efficiency cooler was used to cool the EGR gas, which enabled the introduction of the EGR gas at high load conditions, and exhaust gas temperature was reduced.
Technical Paper

Development of Double-Layered Three-Way Catalysts

2009-04-20
2009-01-1081
It is critical to develop high performance three-way catalysts to meet increasing regulations around the world. It was found that a double-layered catalyst loaded with Pt and Rh suppresses Pt-Rh alloying, thereby improving catalytic performance. A double-layered catalyst has the effect of decreasing OSC performance, but this has been overcome by a newly developed Rh support and suppressed Pt grain growth. The developed catalyst is capable of lowering the amount of PGM required by approximately 40%.
Technical Paper

Study of Large OSC Materials (Ln2O2SO4) on the Basis of Sulfur Redox Reaction

2009-04-20
2009-01-1071
Three-way catalyst shows high performance under stoichiometric atmosphere. The CeO2-ZrO2 based materials (CZ) are added as a buffer of O2 concentration. To improve the catalyst performance the larger O2 storage capacity (OSC) are needed. Theoretically, the sulfur oxidation-reduction reaction moves oxygen 8 times larger than cerium. We focused on this phenomenon and synthesized Ln2O2SO4 as a new OSC material. The experimental result under model gas shows that the OSC of Ln2O2SO4 is 5 times lager than CZ.
Technical Paper

High-Pressure Hydrogen-Absorbing Alloy Tank for Fuel Cell Vehicles

2010-04-12
2010-01-0851
Multi-cylinder hydrogen-absorbing alloy tanks for fuel cell vehicles have 10 to 40 metallic cylinders that are bundled and filled with hydrogen-absorbing alloy. In this system, the cylinders themselves act as a heat exchanger and the working pressure is lowered to 10 to 20 MPa compared with high-pressure MH tanks. Moreover, both heat conduction and mass reduction can be achieved by reducing the wall thickness of the cylinders. A model verification experiment was conducted using a one-quarter-scale prototype of a full size tank, and a conduction simulation model verified in the experiment was used to predict the performance of the full size tank. Results showed that it is possible to fill the tank with hydrogen to 80% of its capacity in a five-minute filling time, although issues related to heat conductivity performance require improvement. Accordingly, it may be possible to adopt this tank as part of a system if the storage amount of the hydrogen-absorbing alloy can be increased.
Technical Paper

Development of Low Sulfated Ash and Fuel Economy Diesel Engine Oil

2009-06-15
2009-01-1845
A low sulfated ash (S.Ash) DL-1/C2 0W-30 diesel engine oil with improved fuel economy has been developed to meet the PM targets outlined in the Euro 5 emissions standards and to help achieve the voluntary European CO2 target of 140 g/km. The newly developed engine oil is an effective solution to the trilemma (triple probrem) of reliability (high detergency and high anti wear), low S.Ash, and fuel economy, achieving a fuel economy improvement of 2% and reducing CO2 emissions by 3 g/km.
Journal Article

The Impact of Diesel and Biodiesel Fuel Composition on a Euro V HSDI Engine with Advanced DPNR Emissions Control

2009-06-15
2009-01-1903
In an effort to reduce CO2 emissions, governments are increasingly mandating the use of various levels of biofuels. While this is strongly supported in principle within the energy and transportation industries, the impact of these mandates on the transport stock’s CO2 emissions and overall operating efficiency has yet to be fully explored. This paper provides information on studies to assess biodiesel influences and effects on engine performance, driveability, emissions and fuel consumption on state-of-the-art Euro IV compliant Toyota Avensis D4-D vehicles with DPNR aftertreatment systems. Two fuel matrices (Phases 1 & 2) were designed to look at the impact of fuel composition on vehicle operation using a wide range of critical parameters such as cetane number, density, distillation and biofuel (FAME) level and type, which can be found within the current global range of Diesel fuel qualities.
Technical Paper

Improvement of DI Diesel Engine System by Utilizing GTL Fuels Characteristics

2009-06-15
2009-01-1933
Gas To Liquid (GTL) fuels synthesized from natural gas are known as clean fuels. Therefore, GTL fuels have been expected to be a promising option that can reduce the NOx and PM emissions from diesel engines and contribute to the energy security. In this study, in order to clarify the emission reduction potentials, the improvement of DI diesel engine and aftertreatment systems were investigated by utilizing GTL fuels characteristics. To achieve a further reduction of both NOx and PM emissions, the combustion chamber, injection pattern and EGR calibration were modified. From the results of tests, the engine out NOx emissions were reduced to the Euro 6 regulation level and in parallel the expected deteriorations of HC emission and fuel consumption were suppressed because of the characteristics of high cetane number and zero poly-aromatics hydrocarbons. Additionally, an aftertreatment system was optimized to GTL fuel in order to improve NOx conversion efficiency.
Journal Article

Development of High-Performance Driving Simulator

2009-04-20
2009-01-0450
A number of active safety systems are already developed to support drivers’ decision and action to help avoid accidents, but further enhancement of those active safety systems cannot be accomplished without increasing our understanding on driver behaviors and their interaction with vehicle systems. For this reason, a state-of-art driving simulator (DS) has been developed that creates very realistic scenarios as a means of realizing these requirements. The DS consists of a simulator cabin, turntable (inside the dome), a 6-DOF hexapod system, shakers (vehicle vertical vibration actuators), and a motion system capable of moving 35 meters longitudinally and 20 meters laterally. The system is also capable of projecting images of actual city streets and highways onto a 360° spherical screen inside of the dome. As a result, the DS is able to reproduce a driving environment that is very similar to real driving.
Journal Article

Development of a New Model Based Air-Fuel Ratio Control System

2009-04-20
2009-01-0585
The second-generation air-fuel ratio control method has been developed to reduce exhaust gas emissions in accordance with the improvements in catalysts. The control system consists of a feedforward control using a fuel behavior model, a feedback control using an universal exhaust gas oxygen (UEGO) sensor and a feedback control utilizing the heated exhaust gas oxygen (HEGO) sensor. This significantly improves air-fuel ratio tracking performance by feedforward control derived from the models that express the dynamic phenomena and the disturbance attenuation by UEGO feedback controller which compensates for the long dead-time characteristics by the state predictive control. The tracking performance and the disturbance attenuation can be achieved independently by a two-degree-of-freedom structure presented in this paper. The exhaust air-fuel ratio downstream of the catalyst precisely converges to stoichiometry, which maximizes the conversion efficiency of the catalyst.
Technical Paper

Experimental Study of Lateral Acceleration Feedback Control with Steer-by-Wire System

2010-04-12
2010-01-0996
Steer-by-wire is a system that can independently control steering-wheel torque and vehicle-wheel steering angle. The object of this research was to realize a vehicle that can be driven according to driver's intention in any situation, such as in a crosswind, and rutted road surface. Using a steer-by-wire system, disturbance torque from the vehicle-wheels is not transmitted to the driver, signifying that the steering-wheel angle always indicates driver intention. Also, since unexpected feelings by active steering controls are reduced, feedback controls for the target vehicle behavior are easily realized. This research achieved good characteristics from steering-wheel angle to lateral acceleration by studying response characteristics using a vehicle equipped to measure lateral acceleration feedback.
Journal Article

Multiplex Communication Protocol for Switch/Sensor/Actuator Network: “CXPI”

2016-04-05
2016-01-0057
Abstract The growing functionality and complexity of recent vehicle electronic systems have made inter-device communication (on-board LAN) technology vital to vehicle design. By field of application, the LAN (Local Area Network) systems currently in use are LIN (Local Interconnect Network) used for body systems, CAN (Controller Area Network) used for control systems, and MOST (Media Oriented Systems Transport ) used for multimedia and camera systems, and work to standardize the next-generation communication technology for each of those fields is underway. This paper provides a technical overview of the CXPI (Clock Extension Peripheral Interface) communication protocol, which satisfies the body system requirements (rapid response, system extensibility, high reliability, and low cost). It also presents the progress made on standardization at SAE and other organizations.
Technical Paper

Validation of Control Software by Search-Based Testing Using Formal Methods

2016-04-05
2016-01-0034
Abstract As vehicle control software becomes larger and more complex, it is increasingly important to improve the efficiency of the software development process. This study developed search-based testing technology to increase the efficiency of the validation process. Search-based testing can generate dynamic test data automatically, but it tends to overlook the generation of correct test data to detect problems when the software has many branches and paths. To resolve this problem, a method was devised that combines search-based testing [1] and formal methods such as model checking. This paper describes this method and shows application examples of engine control.
Journal Article

A Custom Integrated Circuit with On-chip Current-to-Digital Converters for Active Hydraulic Brake System

2016-04-05
2016-01-0091
Abstract This paper presents a custom integrated circuit (IC) on which circuit functions necessary for “Active Hydraulic Brake (AHB) system” are integrated, and its key component, “Current-to-Digital Converter” for solenoid current measurement. The AHB system, which realizes a seamless brake feeling for Antilock Brake System (ABS) and Regenerative Brake Cooperative Control of Hybrid Vehicle, and the custom IC are installed in the 4th-generation Prius released in 2015. In the AHB system, as linear solenoid valves are used for hydraulic brake pressure control, high-resolution and high-speed sensing of solenoid current with ripple components due to pulse width modulation (PWM) is one of the key technologies. The proposed current-to-digital converter directly samples the drain-source voltage of the sensing DMOS (double-diffused MOSFET) with an analog-to-digital (A/D) converter (ADC) on the IC, and digitizes it.
Journal Article

The New Generation Front Wheel Drive Hybrid System

2016-04-05
2016-01-1167
Abstract Introducing all-new front wheel drive hybrid system installed in the 2016 Toyota Prius. This system was completely re-designed to maximize the potential of THS-II (Toyota Hybrid System-II). This system was designed to be able to minimize the mechanical and electrical losses from the previous generation system, improve environmental performance, and also tried to reduce size and weight. We’d like to take this opportunity to introduce the new technology of each component, and hybrid system performance.
Journal Article

Technical Development of Electro Magnetic Compatibility for Plug-in Hybrid Vehicle / Electric Vehicle Using Wireless Power Transfer System

2016-04-05
2016-01-1161
Abstract In 2007, researchers at the Massachusetts Institute of Technology successfully completed a Wireless Power Transfer (WPT) experiment. Ever since, interest in WPT has been growing. At Toyota, we have been developing the underlying technology of a WPT system. Simultaneously we have been working with regulatory committees to create a standard for WPT. In particular, there are concerns that WPT’s radiated emissions could cause harm to humans and the neighboring electronic equipment. There are many challenges that need to be overcome, but a key concern is understanding WPT’s electromagnetic compatibility (EMI: Electro-Magnetic Interference and EMF: Electro-Magnetic Field). In this paper, we show the technical issues, the evaluation method, and the development status of EMI and EMF on PHVs/EVs when using WPT. For Electromagnetic interference (EMI) performance, we investigated both an open area test site and an electromagnetic anechoic chamber as evaluation environments.
Journal Article

High Efficiency Electromagnetic Torque Converter for Hybrid Electric Vehicles

2016-04-05
2016-01-1162
Abstract A new concept of an electromagnetic torque converter for hybrid electric vehicles is proposed. The electromagnetic torque converter, which is an electric system comprised of a set of double rotors and a stator, works as a high-efficiency transmission in the driving conditions of low gear ratio including a vehicle moving-off and as a starting device for an internal combustion engine. Moreover, it can be used for an electric vehicle driving as well as for a regenerative braking. In this concept, a high-efficiency drivetrain system for hybrid electric vehicles is constructed by replacing a fluid-type torque converter with the electromagnetic torque converter in the automatic transmission of a conventional vehicle. In this paper, we present the newly developed electromagnetic torque converter with a compact structure that enables mounting on a vehicle, and we evaluate its transmission efficiency by experiment.
Technical Paper

Verification Test Results of Wireless Charging System

2016-04-05
2016-01-1155
Abstract Toyota Motor Corporation (TMC) began a wireless charging field test in February 2014. A wireless charging system was installed at the residences of test subjects with the aim of identifying issues related to convenience and installation in daily usage. The test vehicle was fabricated by installing a wireless charging system into a Prius PHV (Plug-in Hybrid Vehicle). The installed system had the same charging power as the cable charging system used on the base vehicle, and had a charging time of 1.5 hours. A high-frequency 85 kHz power supply and primary coil were produced for the charging infrastructure. To identify differences in charging behavior, the test subjects were asked to use the cable charging system for the first month before changing to the wireless charging system for two months. Data acquisition was performed by an on-board data logger and through interviews with the test subjects.
Technical Paper

Enhancing PtCo Electrode Catalyst Performance for Fuel Cell Vehicle Application

2016-04-05
2016-01-1187
Abstract While carbon supported PtCo alloy nanoparticles emerged recently as the new standard catalyst for oxygen reduction reaction in polymer membrane electrolyte fuel cells, further improvement of catalyst performance is still of great importance to its application in fuel cell vehicles. Herein, we report two examples of such efforts, related to the improvements of catalyst preparation and carbon support design, respectively. First, by lowering acid treatment voltage, the effectiveness for the removal of unalloyed Co was enhanced significantly, leading to less Co dissolution during cell operation and about 40% higher catalyst mass activity. It has been also found that the use of nonporous carbon support material promoted mass transfer and resulted in substantial drop of overpotential at high current and low humidity. This result may suggest an effective strategy towards the development of fuel cell systems that operate without additional humidification.
Technical Paper

Development of the Fuel Cell System in the Mirai FCV

2016-04-05
2016-01-1185
Abstract Toyota Motor Corporation (TMC) has been developing fuel cell (FC) system technology since 1992. In 2008 the Toyota "FCHV-adv" was released as part of a demonstration program. It established major improvements in key performance areas such as cold start/drive capability, efficiency, driving range, and durability. However, in order to facilitate the commercial widespread adoption of fuel cell vehicles (FCVs), improvements in performance and further reductions in size and cost were required.In December 2014, Toyota launched the world’s first commercially available fuel cell vehicle (FCV) the "Mirai" powered by the Toyota Fuel Cell System (TFCS). Simplicity, reliability and efficiency have been significantly improved within the Toyota TFCS. As a result, the Mirai has become an attractive vehicle which could lead the way towards full-scale popularization of FCVs.
Journal Article

Vibration Torque Interception using Multi-Functional Electromagnetic Coupling in a HEV Drive Line

2016-04-05
2016-01-1181
Abstract In the present paper, we introduce a drivetrain system using an electromagnetic coupling for hybrid electric vehicles, and propose a new control concept of vibration torque interception. The electromagnetic coupling is an electric machine that is composed of a pair of rotors, and electromagnetic torque acts mutually between the rotors. In the drivetrain system, the electromagnetic coupling works as a torque transmission device with a rotational-speed-converting function. We demonstrate that, by using this control, the electromagnetic coupling also works as a damping device that intercepts the vibration torque of the internal combustion engine, while transmitting the smooth torque to its drive line. Using a model of a two-inertia resonance system, a control system is designed such that a transfer function representing input-to-output torque is shaped in the frequency domain.
X