Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Large Eddy Simulation of an n-Heptane Spray Flame with Dynamic Adaptive Chemistry under Different Oxygen Concentrations

2015-04-14
2015-01-0400
Detailed chemical kinetics is essential for accurate prediction of combustion performance as well as emissions in practical combustion engines. However, implementation of that is challenging. In this work, dynamic adaptive chemistry (DAC) is integrated into large eddy simulations (LES) of an n-heptane spray flame in a constant volume chamber (CVC) with realistic application conditions. DAC accelerates the time integration of the governing ordinary differential equations (ODEs) for chemical kinetics through the use of locally (spatially and temporally) valid skeletal mechanisms. Instantaneous flame structures and global combustion characteristics such as ignition delay time, flame lift-off length (LOL) and emissions are investigated to assess the effect of DAC on LES-DAC results. The study reveals that in LES-DAC simulations, the auto-ignition time and LOL obtain a well agreement with experiment data under different oxygen concentrations.
Technical Paper

Fuel Consumption and NOx Emission Prediction of Heavy-Duty Diesel Vehicles under Different Test Cycles and Their Sensitivities to Driving Factors

2020-09-15
2020-01-2002
Due to the rapid development of road infrastructure and vehicle population in China, the fuel consumption and emission of on-road vehicles tested in China World Transient Vehicle Cycle (C-WTVC) cannot indicate the real driving results. But the test results in China Heavy-duty Commercial Vehicle Test Cycle-Coach (CHTC-C) based on the road driving conditions in China are closer to the actual driving data. In this paper, the model for predicting the performance of heavy-duty vehicles is established and validated. The fuel consumption and NOx emission of a Euro VI heavy-duty coach under C-WTVC and CHTC-C tests are calculated by employing the developed model. Furthermore, the fuel consumption of the test coach is optimized and its sensitivity to the driving factors is analyzed.
Technical Paper

Optimization of Piston Bowl Geometry for a Low Emission Heavy-Duty Diesel Engine

2020-09-15
2020-01-2056
A computational fluid dynamics (CFD) guided design optimization was conducted for the piston bowl geometry for a heavy-duty diesel engine. The optimization goal was to minimize engine-out NOx emissions without sacrificing engine peak power and thermal efficiency. The CFD model was validated with experiments and the combustion system optimization was conducted under three selected operating conditions representing low speed, maximum torque, and rated power. A hundred piston bowl shapes were generated, of which 32 shapes with 3 spray angles for each shape were numerically analyzed and one optimized design of piston bowl geometry with spray angle was selected. On average, the optimized combustion system decreased nitrogen oxide (NOx) emissions by 17% and soot emissions by 41% without compromising maximum engine power and fuel economy.
Journal Article

Experimental Investigation of Homogeneous Charge Induced Ignition (HCII) with Low-Pressure Injection to Reduce PM Emissions in a Heavy-Duty Engine

2016-04-05
2016-01-0775
Homogeneous Charge Induced Ignition (HCII) combustion utilizes a port injection of high-volatile fuel to form a homogeneous charge and a direct injection of high ignitable fuel near the Top Dead Center (TDC) to trigger combustion. Compared to Conventional Diesel Combustion (CDC) with high injection pressures, HCII has the potential to achieve diesel-like thermal efficiency with significant reductions in NOx and PM emissions with relatively low-pressure injections, which would benefit the engine cost saving remarkably. In the first part of current investigation, experiments were conducted at medium load with single diesel injection strategy. HCII exhibited great potential of using low injection pressures to achieve low soot emissions. But the engine load for HCII was limited by high heat release rate. Thus, in the second and third part, experiments were performed at high and low load with double diesel injection strategy.
Journal Article

Experimental Investigation of the Mechanical Behavior of Aluminum Adhesive Joints under Mixed-Mode Loading Conditions

2018-04-03
2018-01-0105
In recent years, structural adhesives have rapidly become the preferred alternative to resistance spot welding in fabricating stronger, lighter aluminum connections. Connections inevitably undergo and must withstand complex quasi-static and/or dynamic loads during their service life. Therefore, understanding how loading conditions affect the mechanical behavior of adhesive joints is vital to their design and the advancement of structural safety. Quasi-static and dynamic tests are performed to analyze both the strength and failure modes of aluminum 6062 substrates bonded by an adhesive (Darbond EP-1506) for an array of loading directions. An Arcan test device, which enables application of mixed-mode loads ranging from pure peel (mode I) to pure shear (mode II) to the adhesive layer, is employed in quasi-static testing. A self-designed medium-speed test machine is utilized to perform dynamic testing.
Journal Article

Characterization of Metal Foil in Anisotropic Fracture Behavior with Dynamic Tests

2018-04-03
2018-01-0108
Metal foil is a widely used material in the automobile industry, which not only is the honeycomb barrier material but is also used as current collectors in Li-ion batteries. Plenty of studies proved that the mechanical property of the metal foil is quite different from that of the metal sheet because of the size effect on microscopic scale, as the metal foil shows a larger fracture stress and a lower ductility than the metal sheet. Meanwhile, the fracture behavior and accurate constitutive model of the metal foil with the consideration of the strain rate effect are widely concerned in further studies of battery safety and the honeycomb. This article conducted experiments on 8011H18 aluminum foil, aiming to explore the quasi-static and dynamic tension testing method and the anisotropic mechanical behavior of the very thin foil. Two metal foil dog-bone specimens and three types of notched specimens were tested with a strain rate ranging from 2 × 10−4/s to 40/s and various stress states.
Technical Paper

Instantaneous PLII and OH* Chemiluminescence Study on Wide Distillation Fuels, PODEn and Ethanol Blends in a Constant Volume Vessel

2020-04-14
2020-01-0340
The combustion characteristics and soot emissions of three types of fuels were studied in a high pressure and temperature vessel. In order to achieve better volatility, proper cetane number and high oxygen content, the newly designed WDEP fuel was proposed and investigated. It is composed of wide distillation fuel (WD), PODE3-6 mixture (PODEn) and ethanol. For comparison, the test on WD and the mixture of PODEn-ethanol (EP) are also conducted. OH* chemiluminescence during the combustion was measured and instantaneous PLII was also applied to reveal the soot distribution. Abel transformation was adopted to calculate the total soot of axisymmetric flame. The results show that WDEP has similar ignition delays and flame lift-off lengths to those of WD at 870-920 K. But the initial ignition locations of WDEP flame in different cycles were more concentrated, particularly under the condition of low oxygen atmosphere.
Technical Paper

Effect of Oil Viscosity and Driving Mode on Oil Dilution and Transient Emissions Including Particle Number in Plug-In Hybrid Electric Vehicle

2020-04-14
2020-01-0362
Plug-in electric vehicle (PHEV) has a promising prospect to reduce greenhouse gas (GHG) emission and optimize engine operating in high-efficiency region. According to the maximum electric power and all-electric range, PHEVs are divided into two categories, including “all-electric PHEV” and “blended PHEV” and the latter provides a potential for more rational energy distribution because engine participates in vehicle driving during aggressive acceleration not just by motor. However, the frequent use of engine may result in severe emissions especially in low state of charge (SOC) and ahead of catalyst light-off. This study quantitatively investigates the impact of oil viscosity and driving mode (hybrid/conventional) on oil dilution and emissions including particle number (PN).
Technical Paper

Fault-Tolerant Control of Regenerative Braking System on In-Wheel Motors Driven Electric Vehicles

2020-04-14
2020-01-0994
A novel fault tolerant brake strategy for In-wheel motor driven electric vehicles based on integral sliding mode control and optimal online allocation is proposed in this paper. The braking force distribution and redistribution, which is achieved in online control allocation segment, aim at maximizing energy efficiency of the vehicle and isolating faulty actuators simultaneously. The In-wheel motor can generate both driving torque and braking torque according to different vehicle dynamic demands. In braking procedure, In-wheel motors generate electric braking torque to achieve energy regeneration. The strategy is designed to make sure that the stability of vehicle can be guaranteed which means vehicle can follow desired trajectory even if one of the driven motor has functional failure.
Journal Article

Investigation on Transient Emissions of a Turbocharged Diesel Engine Fuelled by HVO Blends

2013-04-08
2013-01-1307
Transient emissions of a turbocharged three-litre V6 diesel engine fuelled by hydrogenated vegetable oil (HVO) blends were experimentally investigated and compared with transient emissions of diesel as reference. The transient emissions measurements were made by highly-dynamic emissions instrumentations including Cambustion HFR500, CLD500 and DMS500 particulate analyzer. The HVO blends used in this study were 30% and 60% of HVO in diesel by volume. The transient conditions were simulated by load increases over 5 s, 10 s and 20 s durations at a constant engine speed. The particulate, NO, HC concentrations were measured to investigate the mechanism of emission formation under such transient schedules. The results showed that as the load increased, NO concentrations initially had a small drop before dramatically increasing for all the fuels investigated which can be associated with the turbocharger lag during the load transient.
Journal Article

Cold and Warm Start Characteristics using HVO and RME Blends in a V6 Diesel Engine

2013-04-08
2013-01-1306
The first several cycles determine the quality of an engine start. Low temperatures and air/fuel ratio cause incomplete combustion of the fuel. This can lead to dramatic increases in HC and PM emissions. In order to meet Euro V legislation requirements which have stricter cold start emission levels, it is critical to study the characteristics of cold and warm starting of engines in order to develop an optimized operation. The NO and THC emissions were measured by fast CLD and Fast FID gas analyzers respectively and PM in both nucleation and accumulation modes were measured by DMS500. The coolant temperature was controlled in order to guarantee the experiment repeatability. The results show that at cold start using RME60 produced higher NO and lower THC than the other tested fuels while combustion of HVO60 produced a similar level of NO but lower THC compared with mineral diesel. Meanwhile, the nucleation mode of mineral diesel was similar to RME60 but higher than HVO60.
Journal Article

Transient Emissions Characteristics of a Turbocharged Engine Fuelled by Biodiesel Blends

2013-04-08
2013-01-1302
The effects of different biodiesel blends on engine-out emissions under various transient conditions were investigated in this study using fast response diagnostic equipment. The experimental work was conducted on a modern 3.0 L, V6 high pressure common rail diesel engine fuelled with mineral diesel (B0) and three different blends of rapeseed methyl esters (RME) (B30, B60, B100 by volume) without any modifications of engine parameters. DMS500, Fast FID and Fast CLD were used to measure particulate matter (PM), total hydrocarbon (THC) and nitrogen monoxide (NO) respectively. The tests were conducted during a 12 seconds period with two tests in which load and speed were changed simultaneously and one test with only load changing. The results show that as biodiesel blend ratio increased, total particle number (PN) and THC were decreased whereas NO was increased for all the three transient conditions.
Technical Paper

Research on Steady and Transient Performance of an HCCI Engine with Gasoline Direct Injection

2008-06-23
2008-01-1723
In this paper, a hybrid combustion mode in four-stroke gasoline direct injection engines was studied. Switching cam profiles and injection strategies simultaneously was adopted to obtain a rapid and smooth switch between SI mode and HCCI mode. Based on the continuous pressure traces and corresponding emissions, HCCI steady operation, HCCI transient process (combustion phase adjustment, SI-HCCI, HCCI-SI, HCCI cold start) were studied. In HCCI mode, HCCI combustion phase can be adjusted rapidly by changing the split injection ratio. The HCCI control strategies had been demonstrated in a Chery GDI2.0 engine. The HCCI engine simulation results show that, oxygen and active radicals are stored due to negative valve overlap and split fuel injection under learn burn condition. This reduces the HCCI sensitivity on inlet boundary conditions, such as intake charge and intake temperature. The engine can be run from 1500rpm to 4000rpm in HCCI mode without spark ignition.
Technical Paper

Study of the Control Strategy of the Plateau Self-adapted Turbocharging System for Diesel Engine

2008-06-23
2008-01-1636
A plateau self-adapted turbocharging system based on variable geometry turbocharger (VGT) technology is proposed to solve the problem of diesel engine operating at plateau. The control strategy of the plateau self-adapted turbocharging system is studied using a GT-Power engine model. The control strategy is based on the optimization of the VGT nozzle vane position at various engine operating conditions and various altitudes. Simulation results show that by optimizing the matching and controlling the VGT, the performance of the engine matched with VGT can be improved significantly compared with the one matched with FGT (fixed geometry turbocharger) at various altitudes. Surge and overspeed phenomena of the turbocharger can also be avoided.
Technical Paper

Integrated System Simulation for Turbocharged IC Engines

2008-06-23
2008-01-1640
An integrated simulation platform for turbocharged internal combustion engines has been developed. Multi-dimensional computational fluid dynamic (CFD) codes are integrated into the system to model the turbocharging circuit, gas circuit, in-cylinder circuit, coolant and oil circuits. As the turbocharger is a critical factor for the IC engine, a turbocharger through-flow model based on mass, momentum, and energy conservation equations has been developed and added in the integrated platform. Compared with the traditional MAP method, the through-flow model can solve the problems of transient matching and lack of numerous experimental maps during the pre-prototype engine design. Partial systems in the integrated platform, such as the in-cylinder flow and combustion circuit, can be modeled by 3-D CFD codes for the investigation of the detailed flow patterns.
Technical Paper

Control System Design for Variable Nozzle Turbocharger

2009-06-11
2009-01-1668
The electronic control system of the variable nozzle turbocharger (VNT) was designed. The actuator is the electro-hydraulic servo proportional solenoid. The signals of the engine pedal position sensor, the engine speed sensor, the boost pressure sensor, the intake air temperature sensor, and the ambient pressure sensor are sampled and filtered. The engine working condition is estimated. The control algorithm was designed as the closed-loop feedback digital PI control together with the open-loop feed forward control. The gain-scheduled PI control method is applied to improve the robustness. The control system was calibrated at the turbocharger test bench and the engine test bench. The results indicate the designed control system has good performance for the boost pressure control under the steady and transient conditions.
Technical Paper

Application of Narrow Cone Angle Injectors to Achieve Advanced Compression Ignition on a Mass-Production Diesel Engine - Control Strategy and Engine Performance Evaluation

2009-11-02
2009-01-2700
Advanced compression ignition combustion system which reduces simultaneously both nitride oxides (NOx) and particulate matter (PM) is a promising approach to meet future emission regulations. In order to achieve advanced compression ignition, flexible fuel injection is required for ultra-early and post-TDC injections, which conventional injector fails to accomplish due to wall-wetting effect. In this work, special injectors with the spray angle of 60 degree are applied on a 4 cylinder mass-production diesel engine without modification of the engine configuration. For application-oriented study, sweep experiments of injection timings and durations, fuel injection pressure and the boost pressure are carried out to investigate the relationships between the control parameters and the engine performance. Model based calibration and real application tests validate the maximum applicable operation range of maximum speed of 2200 RPM and IMEP of 8.0 bar.
Technical Paper

Coordinating Control Oriented Research on Algorithm of Engine Torque Estimation for Parallel Hybrid Electric Powertrain System

2004-03-08
2004-01-0424
The internal combustion engine and motor should be controlled coordinately to meet the demand of smooth power transfer and good drivability especially during transient conditions for parallel hybrid powertrain system. This paper presents the essential technology of how to estimate the engine torque by the measurement and processing of instantaneous crankshaft speed. One multi-injection gasoline engine and one turbocharged diesel engine are selected to manifest the algorithm of engine torque estimation and the experiments show fairly good results for both engines. Consequently an engine torque sensor can be easily calibrated and applied to feedback engine torque in coordinating control.
Technical Paper

Analysis of Energy Consumption on Typical Main Cylinder Booster Based Brake-by-Wire System

2016-09-18
2016-01-1955
The traditional vacuum booster is gradually replaced by Brake-by-Wire system (BBW) in modern passenger car, especially Electric Vehicle (EV). Some mechanical and hydraulic components are replaced by electronic components in Brake-by-Wire system. Using BBW system in modern passenger vehicles can not only improve the automotive safety performance, reliability and stability, but also promote vehicle maneuverability, comfort, fuel economy and environmental protection. Although vehicle's braking performance is greatly improved by using BBW, the system will inevitably consume some energy of the vehicle power supply, thus introducing unexpected drawback in comparison with the traditional vacuum assist braking system, since it doesn't need any electric power. Therefore, the analysis of energy consumption on typical main cylinder booster based BBW system under typical driving cycles will contribute to advanced design of current advanced braking system.
Technical Paper

Relative Impact of Chemical and Physical Properties of the Oil-Fuel Droplet on Pre-Ignition and Super-Knock in Turbocharged Gasoline Engines

2016-10-17
2016-01-2278
A conceptual approach to help understand and simulate droplet induced pre-ignition is presented. The complex phenomenon of oil-fuel droplet induced pre-ignition has been decomposed to its elementary processes. This approach helps identify the key fluid properties and engine parameters that affect the pre-ignition phenomenon, and could be used to control LSPI. Based on the conceptual model, a 3D CFD engine simulation has been developed which is able to realistically model all of the elementary processes involved in droplet induced pre-ignition. The simulation was successfully able to predict droplet induced pre-ignition at conditions where the phenomenon has been experimentally observed. The simulation has been able to help explain the observation of pre-ignition advancement relative to injection timing as experimentally observed in a previous study [6].
X