Refine Your Search

Search Results

Viewing 1 to 16 of 16
Journal Article

The Role of EGR in PM Emissions from Gasoline Engines

2010-04-12
2010-01-0353
A dilute spark-ignited engine concept has been developed as a potential low cost competitor to diesel engines by Southwest Research Institute (SwRI), with a goal of diesel-like efficiency and torque for light- and medium-duty applications and low-cost aftertreatment. The targeted aftertreatment method is a traditional three-way catalyst, which offers both an efficiency and cost advantage over typical diesel aftertreatment systems. High levels of exhaust gas recirculation (EGR) have been realized using advanced ignition systems and improved combustion, with significant improvements in emissions, efficiency, and torque resulting from using high levels of EGR. The primary motivation for this work was to understand the impact high levels of EGR would have on particulate matter (PM) formation in a port fuel injected (PFI) engine. While there are no proposed regulations for PFI engine PM levels, the potential exists for future regulations, both on a size and mass basis.
Journal Article

The Impact of Cooled EGR on Peak Cylinder Pressure in a Turbocharged, Spark Ignited Engine

2015-04-14
2015-01-0744
The use of cooled EGR as a knock suppression tool is gaining more acceptance worldwide. As cooled EGR become more prevalent, some challenges are presented for engine designers. In this study, the impact of cooled EGR on peak cylinder pressure was evaluated. A 1.6 L, 4-cylinder engine was operated with and without cooled EGR at several operating conditions. The impact of adding cooled EGR to the engine on peak cylinder pressure was then evaluated with an attempt to separate the effect due to advanced combustion phasing from the effect of increased manifold pressure. The results show that cooled EGR's impact on peak cylinder pressure is primarily due to the knock suppression effect, with the result that an EGR rate of 25% leads to an almost 50% increase in peak cylinder pressure at a mid-load condition if the combustion phasing is advanced to Knock Limited Spark Advance (KLSA). When combustion phasing was held constant, increasing the EGR rate had almost no effect on PCP.
Journal Article

LPL EGR and D-EGR® Engine Concept Comparison Part 2: High Load Operation

2015-04-14
2015-01-0781
The ongoing pursuit of improved engine efficiency and emissions is driving gasoline low-pressure loop EGR systems into production around the globe. The Dedicated EGR (D-EGR®) engine was developed to minimize some of the challenges of cooled EGR while maintaining its advantages. The D-EGR engine is a high efficiency, low emissions internal combustion engine for automotive and off-highway applications. The core of the engine development focused on a unique concept that combines the efficiency improvements associated with recirculated exhaust gas and the efficiency improvements associated with fuel reformation. To outline the differences of the new engine concept with a conventional LPL EGR setup, a turbocharged 2.0 L PFI engine was modified to operate in both modes. The second part of the cooled EGR engine concept comparison investigates efficiency, knock resistance, combustion stability, and maximum load potential at high load conditions.
Journal Article

Potential and Challenges for a Water-Gas-Shift Catalyst as a Combustion Promoter on a D-EGR® Engine

2015-04-14
2015-01-0784
In light of the increasingly stringent efficiency and emissions requirements, several new engine technologies are currently under investigation. One of these new concepts is the Dedicated EGR (D-EGR®) engine. The concept utilizes fuel reforming and high levels of recirculated exhaust gas (EGR) to achieve very high levels of thermal efficiency. While the positive impact of reformate, in particular hydrogen, on gasoline engine performance has been widely documented, the on-board reforming process and / or storage of H2 remains challenging. The Water-Gas-Shift (WGS) reaction is well known and has been used successfully for many years in the industry to produce hydrogen from the reactants water vapor and carbon monoxide. For this study, prototype WGS catalysts were installed in the exhaust tract of the dedicated cylinder of a turbocharged 2.0 L in-line four cylinder MPI engine. The potential of increased H2 production in a D-EGR engine was evaluated through the use of these catalysts.
Journal Article

LPL EGR and D-EGR® Engine Concept Comparison Part 1: Part Load Operation

2015-04-14
2015-01-0783
The ongoing pursuit of improved engine efficiency and emissions are driving gasoline low-pressure loop EGR systems into production around the globe. To minimize inevitable downsides of cooled EGR while maintaining its advantages, the Dedicated EGR (D-EGR®) engine was developed. The core of the D-EGR engine development focused on a unique concept that combines the efficiency improvements associated with recirculated exhaust gas and the efficiency improvements associated with fuel reformation. To outline the differences of the new engine concept with a conventional low-pressure loop (LPL) EGR setup, a turbocharged 2.0 L PFI engine was modified to operate in both modes and also compared to the baseline. The first part of the cooled EGR engine concept comparison investigates efficiency, emissions, combustion stability, and robustness at throttled part load conditions.
Journal Article

Impact of EGR Quality on the Total Inert Dilution Ratio

2016-04-05
2016-01-0713
A series of tests were performed on a gasoline powered engine with a Dedicated EGR® (D-EGR®) system. The results showed that changes in engine performance, including improvements in burn rates and stability and changes in emissions levels could not be adequately accounted for solely due to the presence of reformate in the EGR stream. In an effort to adequately characterize the engine's behavior, a new parameter was developed, the Total Inert Dilution Ratio (TIDR), which accounts for the changes in the EGR quality as inert gases are replaced by reactive species such as CO and H2.
Journal Article

Ethanol Flex-fuel Engine Improvements with Exhaust Gas Recirculation and Hydrogen Enrichment

2009-04-20
2009-01-0140
An investigation was performed to identify the benefits of cooled exhaust gas recirculation (EGR) when applied to a potential ethanol flexible fuelled vehicle (eFFV) engine. The fuels investigated in this study represented the range a flex-fuel engine may be exposed to in the United States; from 85% ethanol/gasoline blend (E85) to regular gasoline. The test engine was a 2.0-L in-line 4 cylinder that was turbocharged and port fuel injected (PFI). Ethanol blended fuels, including E85, have a higher octane rating and produce lower exhaust temperatures compared to gasoline. EGR has also been shown to decrease engine knock tendency and decrease exhaust temperatures. A natural progression was to take advantage of the superior combustion characteristics of E85 (i.e. increase compression ratio), and then employ EGR to maintain performance with gasoline. When EGR alone could not provide the necessary knock margin, hydrogen (H2) was added to simulate an onboard fuel reformer.
Journal Article

A Continuous Discharge Ignition System for EGR Limit Extension in SI Engines

2011-04-12
2011-01-0661
A novel continuous inductive discharge ignition system has been developed that allows for variable duration ignition events in SI engines. The system uses a dual-coil design, where two coils are connected by a diode, combined with the multi-striking coil concept, to generate a continuous current flow through the spark plug. The current level and duration can be regulated by controlling the number of re-strikes that each coil performs or the energy density the primary coils are charged to. Compared to other extended duration systems, this system allows for fairly high current levels during the entire discharge event while avoiding the extremely high discharge levels associated with other, shorter duration, high energy ignition systems (e.g. the plasma jet [ 1 , 2 ], railplug [ 3 ] or laser ignition systems [ 4 , 5 , 6 , 7 , 8 ].
Journal Article

Effect of EGR on Particle Emissions from a GDI Engine

2011-04-12
2011-01-0636
Gasoline direct injected (GDI) engines are becoming a concern with respect to particulate matter (PM) emissions. The upcoming 2014 Euro 6 regulations may require a drastic reduction in solid particle number emissions from GDI engines and the proposed California Air Resources Board (CARB) LEV III regulations for 2014 and 2017 will also require some PM reduction measures. As a result, it is necessary to characterize PM emissions from GDI engines and investigate strategies that suppress particle formation during combustion. The main focus of this work was on using exhaust gas recirculation (EGR) as a means to reduce engine-out particle emissions from a GDI engine with an overall stoichiometric fuel to air mixture. A small displacement, turbocharged GDI engine was operated at a variety of steady-state conditions with differing levels of EGR to characterize total (solid plus volatile) and solid particle emissions with respect to size, number, and soot or black carbon mass.
Journal Article

The Interaction of Fuel Anti-Knock Index and Cooled EGR on Engine Performance and Efficiency

2012-04-16
2012-01-1149
Experiments were performed on a 2.4L boosted, MPI gasoline engine, equipped with a low-pressure loop (LPL) cooled EGR system and an advanced ignition system, using fuels with varying anti-knock indices. The fuels were blends of 87, 93 and 105 Anti-Knock Index (AKI) gasoline. Ignition timing and EGR sweeps were performed at various loads to determine the tradeoff between EGR level and fuel octane rating. The resulting engine data was analyzed to establish the relationship between the octane requirement and the level of cooled EGR used in a given application. In addition, the combustion difference between fuels was examined to determine the effect that fuel reactivity, in the form of anti-knock index (AKI), has on EGR tolerance and burn rate. The results indicate that the improvement in effective AKI of the fuel from using EGR is constant across commercial grade gasolines at about 0.5 ON per % EGR.
Technical Paper

The Effect of Hydrogen Enrichment on EGR Tolerance in Spark Ignited Engines

2007-04-16
2007-01-0475
Small (up to 1% by volume) amounts of hydrogen (H2) were added to the intake charge of a single-cylinder, stoichiometric spark ignited engine to determine the effect of H2 addition on EGR tolerance. Two types of tests were performed at 1500 rpm, two loads (3.1 bar and 5.5 bar IMEP), two compression ratios (11:1 and 14:1) and with two fuels (gasoline and natural gas). The first test involved holding EGR level constant and increasing the H2 concentration. The EGR level of the engine was increased until the CoV of IMEP was > 5% and then small amounts of hydrogen were added until the total was 1% by volume. The effect of increasing the amount of H2 on engine stability was measured along with combustion parameters and engine emissions. The results showed that only a very small amount of H2 was necessary to stabilize the engine. At amounts past that level, increasing the level of H2 had no or only a very small effect.
Technical Paper

Alternative Fuel Testing on a Port Fuel Injected LPL EGR and D-EGR® Engine

2016-10-17
2016-01-2170
A turbocharged 2.0 L PFI engine was modified to operate in a low-pressure loop and Dedicated EGR (D-EGR®) engine configuration. Both engine architectures were operated with a low and high octane gasoline as well as three ethanol blends. The core of this study focused on examining combustion differences at part and high loads between the selected fuels and also the different engine configurations. Specifically, the impact of the fuels on combustion stability, burn rates, knock mitigation, required ignition energy, and efficiency were evaluated. The results showed that the knock resistance generally followed the octane rating of the fuel. At part loads, the burn rates, combustion stability, and EGR tolerance was marginally improved with the high ethanol blends. When combustion was not knock or stability limited, the efficiency differences between the fuels were negligible. The D-EGR engine was much less sensitive to fuel changes in terms of burn rates than the LPL EGR setup.
Technical Paper

A High-Energy Continuous Discharge Ignition System for Dilute Engine Applications

2013-04-08
2013-01-1628
SwRI has developed the DCO® ignition system, a unique continuous discharge system that allows for variable duration/energy events in SI engines. The system uses two coils connected by a diode and a multi-striking controller to generate a continuous current flow through the spark plug of variable duration. A previous publication demonstrated the ability of the DCO system to improve EGR tolerance using low energy coils. In this publication, the work is extended to high current (≻ 300 mA/high energy (≻ 200 mJ) coils and compared to several advanced ignition systems. The results from a 4-cylinder, MPI application demonstrate that the higher current/higher energy coils offer an improvement over the lower energy coils. The engine was tested at a variety of speed and load conditions operating at stoichiometric air-fuel ratios with gasoline and EGR dilution.
Technical Paper

Water-Gas-Shift Catalyst Development and Optimization for a D-EGR® Engine

2015-09-01
2015-01-1968
Dedicated Exhaust Gas Recirculation (D-EGR®) technology provides a novel means for fuel efficiency improvement through efficient, on-board generation of H2 and CO reformate [1, 2]. In the simplest form of the D-EGR configuration, reformate is produced in-cylinder through rich combustion of the gasoline-air charge mixture. It is also possible to produce more H2 by means of a Water Gas Shift (WGS) catalyst, thereby resulting in further combustion improvements and overall fuel consumption reduction. In industrial applications, the WGS reaction has been used successfully for many years. Previous engine applications of this technology, however, have only proven successful to a limited degree. The motivation for this work was to develop and optimize a WGS catalyst which can be employed to a D-EGR configuration of an internal combustion engine. This study consists of two parts.
Technical Paper

Impact of Operating Parameters on Ignition System Energy Consumption

2014-04-01
2014-01-1233
The use of cooled EGR in gasoline engines improves the fuel efficiency of the engine through a variety of mechanisms, including improving the charge properties (e.g. the ratio of specific heats), reducing knock and enabling higher compression ratio operation and, at part loads conditions in particular, reducing pumping work. One of the limiting factors on the level of improvement from cooled EGR is the ability of the ignition system to ignite a dilute mixture and maintain engine stability. Previous work from SwRI has shown that, by increasing the ignition duration and using a continuous discharge ignition system, an improved ignition system can substantially increase the EGR tolerance of an engine [1, 2]. This improvement comes at a cost, however, of increased ignition system energy requirements and a potential decrease in spark plug durability. This work examines the impact of engine operating parameters on the ignition energy requirements under high dilution operation.
Technical Paper

Microwave Enhancement of Lean/Dilute Combustion in a Constant-Volume Chamber

2019-04-02
2019-01-1198
High dilution engines have been shown to have a significant fuel economy improvement over their non-dilute counterparts. Much of this improvement comes through an increase in compression ratio enabled by the high knock resistance from high dilution. Unfortunately, the same reduction in reactivity that leads to the knock reduction also reduces flame speed, leading to the engine becoming unstable at high dilution rates. Advanced ignition systems have been shown to improve engine stability, but their impact is limited to the area at, or very near, the spark plug. To further improve the dilute combustion, a system in which a microwave field is established in the combustion chamber is proposed. This standing electric field has been shown, in other applications, to improve dilution tolerance and increase the burning velocity.
X