Refine Your Search

Topic

Search Results

Technical Paper

Objective Evaluation Model of Automatic Transmission Shift Quality Based on Multi-Hierarchical Grey Relational Analysis

2018-04-03
2018-01-0405
Improvement of shift quality evaluation has become more prevalent over the past few years in the development of automatic transmission electronic control system. For the problems of the subjective shift quality evaluation that subjectivity is too strong, the standard cannot be unified and the definition of the objective evaluation index is not clear at present, this paper studies on the methods of objective evaluation of shift quality based on the multi-hierarchical grey relational analysis. Firstly, objective evaluation index system is constructed based on physical quantities, such as the engine speed, the longitudinal acceleration of the vehicle and so on, which broadens the scope of the traditional objective evaluation index further.
Technical Paper

Control Synthesis for Distributed Vehicle Platoon Under Different Topological Communication Structures

2019-04-02
2019-01-0494
The wireless inter-vehicle communication provide a manner to achieve multi-vehicle cooperative driving, and the platoon of automotive vehicle can significantly improve traffic efficiency and ensure traffic safety. Previous researches mostly focus on the state of the proceeding vehicle, and transmit information from self to the succeeding vehicle. Nevertheless, this structure possesses high requirements for controller design and shows poor effect in system stability. In this paper, the state of vehicles is not only related to the information of neighbor vehicles, while V2V communication transmit information over a wide range of area. To begin with, the node dynamic model of vehicle is described by linear integrator with inertia delay and the space control strategy is proposed with different topological communication structures as BF, LBF, PBF, etc.
Technical Paper

Lightweight Design of CFRP Automobile Tailgate Based on Multi-Step Optimization

2019-04-02
2019-01-1103
As a critical part of auto-body, the design of tailgate not only affects the beauty, usability and safety of automobile, but also involves more and more issues about environmental protection and energy saving. Hence, it is of vital importance to investigate lightweight of tailgate. This paper mainly focuses on lightweight design of CFRP tailgate based on conventional SUV metal tailgate, which can be realized under the condition of meeting requirements of stiffness, modal and manufacturing with the adoption of multi-step optimization method. To start with, finite element (FE) model of metal tailgate is established. Meanwhile, the stiffness and modal analyses, including bending stiffness, torsional stiffness, lateral stiffness, vertical stiffness and free modal are set up. Then, the structural performances of metal tailgate are analyzed, and the topology optimization of CFRP tailgate is performed.
Technical Paper

Impact Theory Based Total Cylinder Sampling System and its Application

2008-06-23
2008-01-1795
A novel non-destroy repeatable-use impact theory based total cylinder sampling system has been established. This system is mainly composed of a knocking body and a sampling valve. The knocking body impacts the sampling valve with certain velocity resulting in huge force to open the sampling valve and most of the in-cylinder gas has been dumped to one sampling bag for after-treatment. The feasibility and sampling response characteristics of this impact theory based total cylinder sampling system were investigated by engine bench testing. Within 0 to 35°CA ATDC (Crank Angle After Top Dead Center) sample timing 50 percent to 80 percent of in-cylinder mass would be sampled, which was a little less compared with the traditional system. The half decay period of pressure drop was 10 to 20 degrees crank angle within 0 to 60°CA ATDC sample timing, which was about 2-3 times of the traditional system.
Technical Paper

Develop Hybrid Transit Buses for Chinese Cities1

2003-03-03
2003-01-0087
This paper summarized the first phase research work to develop hybrid transit buses for China, including driving cycle analysis, performance requirements setting, key components first dimensioning, configuration choosing, saving potential estimate and parametric study. Through these fundamental works, we realize that (1) the Chinese urban bus cycle has some specialties compared with foreign ones, and these specialties cause differences on the design criteria and design results of the hybrid buses; (2) the parallel configuration is better than the series one for the Chinese cycle from both fuel consumption and cost points of view.
Technical Paper

Performance Simulation Research on Bus with Air Suspension

2002-11-18
2002-01-3093
Air spring has a variable stiffness characteristic, its vibration frequency is much lower than that of leaf spring and will not vary with load of vehicle. More and more air springs are applied on automobile suspension. A study on the automobile ride comfort, and the controllability and stability about the bus with air suspension is performed in the paper, which is based on multi-body system dynamics.
Technical Paper

The Algorithmic Research of Multi-operating Mode Energy Management System

2013-04-08
2013-01-0988
The traditional energy management algorithm is mainly based on a single driving cycle, it is obvious that many factors might be often neglected by designer, such as different driving cycles would suit for different control strategies. But they tend to make decisions on the balance of torque distribution and battery power that based on a single driving cycle. Therefore, it is very difficult to achieve the optimal control in each case. In this paper we introduce a new design concept of Multi-operating mode energy management, a mathematical model of the energy management applied to a hybrid vehicle system is presented. Results of simulations using the model with the Multi-operating mode energy management were compared with results of simulations using a model with the single mode energy management, allowing the energy efficiency evaluation of the proposed energy management system.
Journal Article

Analysis of Performance Parameters of Torsional Vibration Damper Under Various Operating Conditions

2013-04-08
2013-01-1488
The performance parameters of torsional vibration damper, including stiffness and damping, have great influence on the torsional vibration of automobile driveline. At present, the research on torsional vibration damper mainly concentrates on the torsional stiffness, but rarely on the torsional damping characteristics. This paper systematically studied the effect of torsional stiffness and damping on torsional vibration of automobile driveline under uniform speed conditions, accelerated and decelerated conditions, idling conditions and resonance conditions. The requirements on stiffness and damping of various operating conditions were summarized. The effect and requirements researched were useful to performance match design of torsional vibration damper.
Journal Article

Objective Evaluation of Interior Sound Quality in Passenger Cars Using Artificial Neural Networks

2013-04-08
2013-01-1704
In this research, the interior noise of a passenger car was measured, and the sound quality metrics including sound pressure level, loudness, sharpness, and roughness were calculated. An artificial neural network was designed to successfully apply on automotive interior noise as well as numerous different fields of technology which aim to overcome difficulties of experimentations and save cost, time and workforce. Sound pressure level, loudness, sharpness, and roughness were estimated by using the artificial neural network designed by using the experiment values. The predicted values and experiment results are compared. The comparison results show that the realized artificial intelligence model is an appropriate model to estimate the sound quality of the automotive interior noise. The reliability value is calculated as 0.9995 by using statistical analysis.
Journal Article

System Design and Parameter Matching for the New Generation of Hybrid Electric City Bus

2008-06-23
2008-01-1573
In this paper, based on the research of the first generation of a hybrid electric city bus, principle researches have been offered on the parameters matching of the power-train and main components for the new generation of hybrid electric city bus. The vehicle system was designed integrated, and then simulation platform was developed and established. The dynamic and economy performance can be predicted based on the above work, results show that the designed hybrid electric city bus can meet the performance demands and validate rationality of the parameters matching.
Technical Paper

Personalized Eco-Driving for Intelligent Electric Vehicles

2018-08-07
2018-01-1625
Minimum energy consumption with maximum comfort driving experience define the ideal human mobility. Recent technological advances in most Advanced Driver Assistance Systems (ADAS) on electric vehicles not only present a significant opportunity for automated eco-driving but also enhance the safety and comfort level. Understanding driving styles that make the systems more human-like or personalized for ADAS is the key to improve the system comfort. This research focuses on the personalized and green adaptive cruise control for intelligent electric vehicle, which is also known to be MyEco-ACC. MyEco-ACC is based on the optimization of regenerative braking and typical driving styles. Firstly, a driving style model is abstracted as a Hammerstein model and its key parameters vary with different driving styles. Secondly, the regenerative braking system characteristics for the electric vehicle equipped with 4-wheel hub motors are analyzed and braking force distribution strategy is designed.
Technical Paper

Research of the Primary Breakup of a Planar Liquid Sheet Produced by an Air-Blast Atomizer

2014-04-01
2014-01-1430
The primary breakup of a planar liquid sheet produced by an air-blast atomizer was studied through numerical simulations, in order to reveal physical mechanisms involved during this process. The reliability of simulations was verified by comparing the macroscopic parameters, e.g. breakup time and spatial growth rate, with experimental data. Shear instability and RT (Rayleigh-Taylor) instability were found to play important roles during the primary breakup. By analyzing the acceleration of a fluid parcel within liquid sheet using Discrete Particle Method, and measuring the wave length of transverse unstable wave, RT instability was found to be partially responsible for transverse instability. The predictions of LISA (Linearized Instability Sheet Atomization) model on breakup time were compared to experiments, and obvious differences were found to exist.
Technical Paper

The Development of a Small Restricted Turbocharged Racecar Engine

2016-11-08
2016-32-0061
This paper summarized the development methodology and technical experiences on Formula Student racecar engines acquired by Jilin University from 2011 to 2015. This series of engines are all based on 600cc 4-cylinder motorcycle gasoline engines and were modified to turbocharged engines which met the Formula Student technical regulations, in order to achieve higher power output, wider torque band as well as lower fuel consumption. During the development process, multiple research projects have been conducted surrounding the turbocharging technology. These research projects have covered multiple areas including the matching of the flow rate characteristics of the engine and the turbocharger, the design of intake and exhaust systems, research on the wastegate as well as its actuator, the tuning and control of the boost pressure as well as the design of the lubrication system for the turbocharger, etc.
Technical Paper

4WID/4WIS Electric Vehicle Modeling and Simulation of Special Conditions

2011-09-13
2011-01-2158
This paper introduces the characteristics of the 4 wheel independent driving/4 wheel independent steering (4WID/4WIS) electric vehicle (EV). Models of Subsystems and the vehicle are constructed based on Matlab/simulink. The vehicle model allows the inputs of different drive torques and steer angles of four wheels. The dynamic characteristics of drive motors and steer motors are considered, and also it can reflect the vehicle longitudinal dynamics change due to the increase of the mass and inertia of the four wheels. Besides, drive mode selection function that is unique to this type vehicle is involved. Simulations and analyses of crab, oblique driving and zero radius turning which are the special conditions of 4WID/4WIS EV are conducted. The results show that the model can reflect the dynamic response characteristics. The model can be used to the simulation analyses of handling, stability, energy saving and control strategies verification of 4WID/4WIS EVs.
Technical Paper

Performance Characteristics Analysis of Variable Expansion Ratio Expander Based on Organic Rankine Cycle for Automobile Waste Heat Recovery

2017-10-08
2017-01-2183
A reciprocating piston expander model based on organic Rankine cycle (ORC) is built for engine waste heat recovery. The expander characterizes by variable expansion ratio through adjusting working fluid injection timing. This paper investigates the effect of working fluid evaporating pressure, expansion ratio and clearance volume on the expander performance which mainly includes output power, equivalent recovery efficiency, total output power, expander efficiency, and the weighted efficiency of the expander, weighted heat recovery efficiency of the expander. The results demonstrate that the total output power and the equivalent heat recovery efficiency increase with working fluid evaporating pressure under overall operating conditions, while the increment is negligible. The expander reaches maximum total output power up to 83.4kW under c100 engine condition and 1.1MPa working fluid evaporating pressure within the research operating conditions.
Technical Paper

Deterioration Characteristic of Catalyzed DPF Applied on Diesel Truck Durable Ageing

2018-09-10
2018-01-1701
In this paper, it was researched the degradation characteristics of catalytic performance of three kinds of DPFs (C1, C2 and C3, with precious metal concentrations being 15, 25 and 35 g/ft3 respectively) after diesel truck aging. It is found out that the crystallinity of three kinds of DPF samples (Used) in full vehicle aging was higher than that of fresh samples (Fresh) and aged samples (Aged) in the laboratory. Compared with Fresh samples, the concentration of Pt atom in precious metal on the surface of Aged and Used samples tends to decrease in most cases. Activities to CO and C3H8 of Aged and Used samples of three kinds of DPFs had all been degraded, and activity degradation showed a substantial correlation with concentration reduction rate of precious metal on the carrier surface. NO2 productivity of Used samples all rose. Crystallinity of DPF samples after full vehicle aging in Inlet, Middle and Outlet areas successively increased.
Technical Paper

Overtaking or Merging? Eco-Routing Decision and Speed Trajectory with Full Terrain Information

2018-04-03
2018-01-0038
With vehicle platooning becoming an important research field in recent years, it is now imperative to introduce platoons as part of the dynamic environment, considering overtaking and merging possibilities. This article studies optimal speed trajectories and longitudinal control with optimized energy efficiency for an autonomous vehicle with several preceding platoons and full terrain information. It aims at improving the energy efficiency of vehicles with Advanced Driver Assistance Systems (ADAS). A forward discrete dynamic programming (DDP) algorithm with distance as the discretization basis is used to derive speed trajectories in the trade-off between air drag reduction and energy saved by utilizing the road slope information. The problem is decomposed into decisions whether to overtake or to merge into the nearest platoon with the assumption of sufficient distance among platoons.
Technical Paper

Research on Roll Vibration Characteristics of a Truck's Front Suspension

2015-04-14
2015-01-0635
For the roll vibration problem of a Truck, a 4-DOF roll vibration model of its front suspension system was built. According to dynamics theory, the complex modal vibration modes of the model were all obtained. At the same time, the frequency response functions of frame roll angle acceleration, the relative dynamic load of wheel and the suspension dynamic deflection were respectively presented. Then their characteristics were respectively researched. In the process of characteristic analysis, a new system parameter was proposed, which is the space ratio of the space between suspensions of left and right sides and the wheel track of the front axle (space ratio in short). At last, the influence of system parameters on the vibration transmission property was also reserached, which included the natural frequency of the frame, the damping ratio, the stiffness ratio, the mass ratio, the rotational inertia ratio and the space ratio.
Technical Paper

Control Optimization of a Charge Sustaining Hybrid Powertrain for Motorsports

2018-04-03
2018-01-0416
The automotive industry is aggressively pursuing fuel efficiency improvements through hybridization of production vehicles, and there are an increasing number of racing series adopting similar architectures to maintain relevance with current passenger car trends. Hybrid powertrains offer both performance and fuel economy benefits in a motorsport setting, but they greatly increase control complexity and add additional degrees of freedom to the design optimization process. The increased complexity creates opportunity for performance gains, but simulation based tools are necessary since hybrid powertrain design and control strategies are closely coupled and their optimal interactions are not straightforward to predict. One optimization-related advantage that motorsports applications have over production vehicles is that the power demand of circuit racing has strong repeatability due to the nature of the track and the professional skill-level of the driver.
Journal Article

GPS Modeling for Vehicle Intelligent Driving Simulation

2018-04-03
2018-01-0763
In recent years, intelligent vehicles have become one of the major research topics in vehicle engineering and have created a new opportunity for the automotive industry. Simulation and real experiment are both essential to the development of intelligent vehicle technologies. Vehicle positioning systems, such as global positioning system (GPS), play an important role in intelligent vehicle development. The GPS model plays a major part in the development of intelligent vehicle simulation systems. Primarily focusing on application requirements of intelligent vehicle simulation platforms for GPS sensor modeling, considering the major factors affecting positioning accuracy in vehicle driving environments, this article establishes a new GPS model and algorithm based on the physical and functional characteristics of GPS. As the basis of this model system, a precise ephemeris model is established to obtain the coordinates of GPS satellites at any given time.
X