Refine Your Search

Topic

Search Results

Technical Paper

Research on High-efficiency Test Method of Vehicle AEB based on High-precision Detection of Radar Turntable Encoder

2021-10-11
2021-01-1273
With the increasingly complex traffic environment, the vehicle AEB system needs to go through a large number of testing processes, in order to drive more safely on the road. For speeding up the development process of AEB and solve the problems of long cycle, high cost and low efficiency in AEB testing, in this paper, a millimeter wave radar turntable is built, and a high-precision detection algorithm of turntable encoder is designed, at the same time, a test method of vehicle AEB based on the detection data of radar turntable encoder is designed. The verification results show that methods described in this paper can be used to develop the vehicle AEB test algorithm efficiently.
Technical Paper

Short-Term Vehicle Speed Prediction Based on Back Propagation Neural Network

2021-08-10
2021-01-5081
In the face of energy and environmental problems, how to improve the economy of fuel cell vehicles (FCV) effectively and develop intelligent algorithms with higher hydrogen-saving potential are the focus and difficulties of current research. Based on the Toyota Mirai FCV, this paper focuses on the short-term speed prediction algorithm based on the back propagation neural network (BP-NN) and carries out the research on the short-term speed prediction algorithm based on BP-NN. The definition of NN and the basic structure of the neural model are introduced briefly, and the training process of BP-NN is expounded in detail through formula derivation. On this basis, the speed prediction model based on BP-NN is proposed. After that, the parameters of the vehicle speed prediction model, the characteristic parameters of the working condition, and the input and output neurons are selected to determine the topology of the vehicle speed prediction model.
Journal Article

Vehicle Longitudinal Control Algorithm Based on Iterative Learning Control

2016-04-05
2016-01-1653
Vehicle Longitudinal Control (VLC) algorithm is the basis function of automotive Cruise Control system. The main task of VLC is to achieve a longitudinal acceleration tracking controller, performance requirements of which include fast response and high tracking accuracy. At present, many control methods are used to implement vehicle longitudinal control. However, the existing methods are need to be improved because these methods need a high accurate vehicle dynamic model or a number of experiments to calibrate the parameters of controller, which are time consuming and costly. To overcome the difficulties of controller parameters calibration and accurate vehicle dynamic modeling, a vehicle longitudinal control algorithm based on iterative learning control (ILC) is proposed in this paper. The algorithm works based on the information of input and output of the system, so the method does not require a vehicle dynamics model.
Technical Paper

A Path Planning and Model Predictive Control for Automatic Parking System

2020-04-14
2020-01-0121
With the increasing number of urban cars, parking has become the primary problem that people face in daily life. Therefore, many scholars have studied the automatic parking system. In the existing research, most of the path planning methods use the combined path of arc and straight line. In this method, the path curvature is not continuous, which indirectly leads to the low accuracy of path tracking. The parking path designed using the fifth-order polynomial is continuous, but its curvature is too large to meet the steering constraints in some cases. In this paper, a continuous-curvature parking path is proposed. The parking path tracker based on Model Predictive Control (MPC) algorithm is designed under the constraints of the control accuracy and vehicle steering. Firstly, in order to make the curvature of the parking path continuous, this paper superimposes the fifth-order polynomial with the sigmoid function, and the curve obtained has the continuous and relatively small curvature.
Technical Paper

Personalized Human-Machine Cooperative Lane-Changing Based on Machine Learning

2020-04-14
2020-01-0131
To reduce the interference and conflict of human-machine cooperative control, lighten the operation workload of drivers, and improve the friendliness and acceptability of intelligent vehicles, a personalized human-machine cooperative lane-change trajectory tracking control method was proposed. First, a lane-changing driving data acquisition test was carried out to collect different driving behaviors of different drivers and form the data pool for the machine learning method. Two typical driving behaviors from an aggressive driver and a moderate driver are selected to be studied. Then, a control structure combined by feedforward and feedback control based on Long Short Term Memory (LSTM) and model-based optimum control was introduced. LSTM is a machine learning method that has the ability of memory. It is used to capture the lane-changing behaviors of each driver to achieve personalization. For each driver, a specific personalized controller is trained using his driving data.
Technical Paper

Research on Control Strategy Optimization for Shifting Process of Pure Electric Vehicle Based on Multi-Objective Genetic Algorithm

2020-04-14
2020-01-0971
With more and more countries proposing timetables for stopping selling of fuel vehicles, China has also issued a “dual-slope” policy. As electric vehicles are the most promising new energy vehicle, which is worth researching. The integration and control of the motor and gearbox have gradually become a hot research topic due to low cost with better performance. This paper takes an electric vehicle equipped with permanent magnet synchronous motor and two-gear automatic transmission without synchronizer and clutch as the research object.
Journal Article

Semi-Active Vibration Control of Landing Gear Using Magneto-Rhelological Dampers

2011-10-18
2011-01-2583
Magneto-rhelological(MR) dampers are devices that use rheological fluids to modify the mechanical properties of fluid absorber. The mechanical simplicity, high dynamic range, large force capacity, lower power requirements, robustness and safe manner of operation have made MR dampers attractive devices for semi-active real-time control in civil, aerospace and automotive applications. Landing gear is one of the most essential components of the aircraft, which plays an extreme important role in preventing the airframe from vibration and excessive impact forces, improving passenger comfortable characteristics and increasing aircraft flight safety. In this paper, the semi-active system used in landing gear damping controller design, simulation, and the vibration test-bed are discussed and researched. The MR dampers employed in landing gear system were designed, manufactured and characterized as available semi-active actuators.
Journal Article

Cooperative Optimization of Vehicle Ride Comfort and Handling Stability by Integrated Control Strategy

2012-04-16
2012-01-0247
Vehicle needs suspension and steering systems with different features to fit different driving conditions. In normal straight driving condition, soft suspension and heavy steering systems are needed to achieve better ride comfort and straight line driving stability; in turning conditions, hard suspension and lightweight steering systems are needed to get better handing stability. The semi-active suspension system with Magneto-Rheological dampers can improve the ride comfort and handling performance of vehicle. Electrical power steering system is developed rapidly due to its portable and flexible operations as well as stable steering performance.
Technical Paper

Development and Validation of New Control Algorithm for Parallel Hybrid Electric Transit Bus

2006-10-31
2006-01-3571
The new control algorithm for parallel hybrid electric vehicle is presented systematically, in which engine operation points are limited within higher efficient area by the control algorithm and the state of charge (SOC) is limited in a range in order to enhance the batteries' charging and discharging efficiency. In order to determine the ideal operating point of the vehicle's engine, the control strategy uses a lookup table to determine the torque output of the engine. The off-line simulation model of parallel HEV power train is developed which includes the control system and controlled objective (such as engine, electric motor, battery pack and so on). The results show that the control algorithm can effectively limite engine and battery operation points and much more fuel economy can be achieved than that of conventional one.
Technical Paper

Research on Compensation Redundancy Control for Basic Force Boosting Failure of Electro-Booster Brake System

2020-04-14
2020-01-0216
As a new brake-by-wire solution, the electro-booster (Ebooster) brake system can work with the electronic stability program (ESP) equipped in the real vehicle to realize various excellent functions such as basic force boosting (BFB), active braking and energy recovery, which is promoting the development of smart vehicles. Among them, the BFB is the function of Ebooster's servo force to assist the driver's brake pedal force establishing high-intensity braking pressure. After the BFB function failure of the Ebooster, it was not possible to provide sufficient brake pressure for the driver's normal braking, and eventually led to traffic accidents. In this paper, a compensation redundancy control strategy based on ESP is proposed for the BFB failure of the self-designed Ebooster.
Technical Paper

A Fuzzy On-Line Self-Tuning Control Algorithm for Vehicle Adaptive Cruise Control System with the Simulation of Driver Behavior

2009-04-20
2009-01-1481
Research of Adaptive Cruise Control (ACC) is an important issue of intelligent vehicle (IV). As we all known, a real and experienced driver can control vehicle's speed very well under every traffic environment of ACC working. So a direct and feasible way for establishing ACC controller is to build a human-like longitudinal control algorithm with the simulation of driver behavior of speed control. In this paper, a novel fuzzy self-tuning control algorithm of ACC is established and this controller's parameters can be tuned on-line based on the evaluation indexes that can describe how the driver consider the quality of dynamical characteristic of vehicle longitudinal dynamics. With the advantage of the controller's parameter on-line self-tuning, the computational workload from matching design of ACC controller is also efficiently reduced.
Technical Paper

An Adaptive PID Controller with Neural Network Self-Tuning for Vehicle Lane Keeping System

2009-04-20
2009-01-1482
Vehicle lane keeping system is becoming a new research focus of drive assistant system except adaptive cruise control system. As we all known, vehicle lateral dynamics show strong nonlinear and time-varying with the variety of longitudinal velocity, especially tire’s mechanics characteristic will change from linear characteristic under low speed to strong nonlinear under high speed. For this reason, the traditional PID controller and even self-tuning PID controller, which need to know a precise vehicle lateral dynamics model to adjust the control parameter, are too difficult to get enough accuracy and the ideal control quality. Based on neural network’s ability of self-learning, adaptive and approximate to any nonlinear function, an adaptive PID control algorithm with BP neural network self-tuning online was proposed for vehicle lane keeping.
Technical Paper

Driver Behavior Characteristics Identification Strategy for Adaptive Cruise Control System with Lane Change Assistance

2017-03-28
2017-01-0432
Adaptive cruise control system with lane change assistance (LCACC) is a novel advanced driver assistance system (ADAS), which enables dual-target tracking, safe lane change, and longitudinal ride comfort. To design the personalized LCACC system, one of the most important prerequisites is to identify the driver’s individualities. This paper presents a real-time driver behavior characteristics identification strategy for LCACC system. Firstly, a driver behavior data acquisition system was established based on the driver-in-the-loop simulator, and the behavior data of different types of drivers were collected under the typical test condition. Then, the driver behavior characteristics factor Ks we proposed, which combined the longitudinal and lateral control behaviors, was used to identify the driver behavior characteristics. And an individual safe inter-vehicle distances field (ISIDF) was established according to the identification results.
Technical Paper

A Multi-mode Control Strategy for EV Based on Typical Situation

2017-03-28
2017-01-0438
A multitude of recent studies are suggestive of the EV as a paramount representative of the NEV, its development direction is transformed from “individuals adapt to vehicles” to “vehicles serve for occupants”. The multi-mode drive control technology is relatively mature in traditional auto control sphere, however, a host of EV continues to use a single control strategy, which lacks of flexibility and diversity, little if nothing interprets the vehicle performances. Furthermore, due to the complex road environment and peculiarity of vehicle occupants that different requirement has been made for vehicle performance. To solve above problems, this paper uses the key technology of mathematical statistics process in MATLAB, such as the mean, linear fitting and discrete algorithms to clean up, screening and classification the original data in general rules, and based on short trips in the segments of kinematics analysis method to establish a representative of quintessential driving cycle.
Technical Paper

Lateral Stability Control Algorithm of Intelligent Electric Vehicle Based on Dynamic Sliding Mode Control

2016-09-14
2016-01-1902
A new lateral stability control method, which is based on vehicle sideslip angle and tire cornering stiffness estimation, is proposed to improve the lateral stability of the four-in-wheel-motor-driven electric vehicle (FIWMD-EV) in this paper. Through the lateral tire force information, vehicle sideslip angle can be estimated by the extended kalman filter (EKF). Using the estimated vehicle sideslip angle, tire cornering stiffness can be also estimated by forgetting factor recursive least squares (FFRLS). Furthermore, combining with the vehicle dynamics model, an adaptive control target model is proposed with the information on vehicle sideslip angle and tire cornering stiffness. The new lateral stability control system uses the direct yaw moment control (DYC) based on dynamic sliding mode is proposed. The performance and effectiveness of the proposed vehicle state estimation and lateral stability control system are verified by CarSim and Simulink cosimulation.
Technical Paper

Auxiliary Drive Control Strategy of Hydraulic Hub-Motor Auxiliary System for Heavy Truck

2016-09-27
2016-01-8113
To improve traditional heavy commercial vehicles performance, this paper introduces a novel hydraulic hub-motor auxiliary system, which could achieve auxiliary driving and auxiliary braking function. Firstly, the system configuration and operation modes are described. In order to achieve coordinating control and distribution of the engine power between mechanical and hydraulic paths, the paper proposes an optimal algorithm based on enhance of vehicle slip efficiency and the results show that displacement of hydraulic variable pump relates with the transmission gear ratio. And then the hydraulic pump displacement controller is designed, in which the feedforward and feedback strategy is adopted. Considering the characteristics of hydraulic hub-motor auxiliary system, a layered auxiliary drive control strategy is proposed in the paper, which includes signal layers, core control layers and executive layers.
Technical Paper

Development of an Advanced Stability Control System of 4WD Electric Vehicle with In-Wheel-Motors

2016-04-05
2016-01-1671
Direct yaw moment control can maintain the vehicle stability in critical situation. For four-wheel independently driven (4WD) electric vehicle with in-wheel motors (IWMs), direct yaw moment control (DYC) can be easily achieved. A fairly accurate calculation of the required yaw moment can improve vehicle stability. A novel sliding mode control (SMC) technique is employed for the motion control so as to track the desired vehicle motion, which is it for different working circumstances compared to the well-used traditional DYC. Through the weighted least square algorithm, the lower controller is used to determine the torque properly allocated to each wheel according to the desired yaw moment. Several actuator constraints are considered in the control strategy. In addition, a nonlinear tire model is utilized to improve the accuracy of tire lateral force estimation. Then, simulations are carried out and the values of vehicle states are compared.
Technical Paper

Analysis of Illumination Condition Effect on Vehicle Detection in Photo-Realistic Virtual World

2017-09-23
2017-01-1998
Intelligent driving, aimed for collision avoidance and self-navigation, is mainly based on environmental sensing via radar, lidar and/or camera. While each of the sensors has its own unique pros and cons, camera is especially good at object detection, recognition and tracking. However, unpredictable environmental illumination can potentially cause misdetection or false detection. To investigate the influence of illumination conditions on detection algorithms, we reproduced various illumination intensities in a photo-realistic virtual world, which leverages recent progress in computer graphics, and verified vehicle detection effect there. In the virtual world, the environmental illumination is controlled precisely from low to high to simulate different illumination conditions in the driving scenarios (with relative luminous intensity from 0.01 to 400). Sedan cars with different colors are modelled in the virtual world and used for detection task.
Technical Paper

Identification of Driver Individualities Using Random Forest Model

2017-09-23
2017-01-1981
Driver individualities is crucial for the development of the Advanced Driver Assistant System (ADAS). Due to the mechanism that specific driving operation action of individual driver under typical conditions is convergent and differentiated, a novel driver individualities recognition method is constructed in this paper using random forest model. A driver behavior data acquisition system was built using dSPACE real-time simulation platform. Based on that, the driving data of the tested drivers were collected in real time. Then, we extracted main driving data by principal component analysis method. The fuzzy clustering analysis was carried out on the main driving data, and the fuzzy matrix was constructed according to the intrinsic attribute of the driving data. The drivers’ driving data were divided into multiple clusters.
Technical Paper

Studies on Steering Feeling Feedback System Based on Nonlinear Vehicle Model

2017-03-28
2017-01-1494
The steer-by-wire system has been widely studied due to many advantages such as good controllability. In the system, the steering column is cancelled and the driver can't feel the feedback torque (also called steering feeling) coming from the ground. Therefore a steering feeling feedback system is needed. In this paper, we propose a simple method to calculate desired feedback torque based on a nonlinear 2DOF vehicle model. The vehicle model contains the nonlinearity of tire. So that the proposed method is also appropriate for big acceleration conditions. Besides that, the properties of steering system such as friction and stiffness are also taken into consideration. As for conventional steering system, driver can only feel part of the feedback torque due to the power assist system. In order to provide steering feeling similar to conventional steering system, a weighting function is proposed to compensate the influence of power assist system.
X