Refine Your Search

Topic

Search Results

Technical Paper

Study on the Performance-Determining Factors of Commercially Available MEA in PEMFCs

2020-04-14
2020-01-1171
Proton exchange membrane fuel cells (PEMFC), which convert the chemical energy into electrical energy directly through electrochemical reactions, are widely considered as one of the best power sources for new energy vehicles (NEV). Some of the major advantages of a PEMFC include high power density, high energy conversion efficiency, minimum pollution, low noise, fast startup and low operating temperature. The Membrane Electrode Assembly (MEA) is one of the core components of fuel cells, which composes catalyst layers (CL) coated proton exchange membrane (PEM) and gas diffusion layers (GDL). The performance of MEA is closely related to mass transportation and the rate of electrochemical reaction. The MEA plays a key role not only in the performance of the PEMFCs, but also for the reducing the cost of the fuel cells, as well as accelerating the commercial applications. Commercialized large-size MEA directly plays a major role in determining fuel cell stack and vehicle performance.
Technical Paper

Cooperative Estimation of Road Grade Based on Multidata Fusion for Vehicle Platoon with Optimal Energy Consumption

2020-04-14
2020-01-0586
The platooning of connected automated vehicles (CAV) possesses the significant potential of reducing energy consumption in the Intelligent Transportation System (ITS). Moreover, with the rapid development of eco-driving technology, vehicle platooning can further enhance the fuel efficiency by optimizing the efficiency of the powertrain. Since road grade is a main factor that affects the energy consumption of a vehicle, the estimation of the road grade with high accuracy is the key factor for a connected vehicle platoon to optimize energy consumption using vehicle-to-vehicle (V2V) communication. Commonly, the road grade is quantified by single consumer grade global positioning system (GPS) with the geodetic height data which is rough and in the meter-level, increasing the difficulty of precisely estimating the road grade.
Technical Paper

Energy Enhanced Adaptive Spark Ignition for Lean Combustion Initiation

2020-04-14
2020-01-0841
For internal combustion engine systems, lean and diluted combustion is an important technology applied for fuel efficiency improvement. Because of the thermodynamic boundary conditions and the presence of in-cylinder flow, the development of a well-sustained flame kernel for lean combustion is a challenging task. Reliable spark discharge with the addition of enhanced delivered energy is thus needed at certain time durations to achieve successful combustion initiation of the lean air-fuel mixture. For a conventional transistor coil ignition system, only limited amount of energy is stored in the ignition coil. Therefore, both the energy of the spark discharge and the duration of the spark discharge are bounded. To break through the energy limit of the conventional transistor coil ignition system, in this work, an adaptive spark ignition system is introduced. The system has the ability to reconstruct the conductive ion channels whenever it is interrupted during the spark discharge.
Technical Paper

Design and Simulation of Serial Hybrid Electric Moped Powertrain

2008-06-23
2008-01-1567
According to the requirements of two-wheel vehicle's future market and the characteristic of urban road conditions in China, the advantages and disadvantages of three basic configurations for the Hybrid Electric Vehicle are compared, finally, the serial hybrid configuration is chosen to be applied to hybrid Electric Moped solution. The selection principle of main components of this hybrid powertrain system includes ICE, generator, battery and hub motor, and the optimal match for performance parameters of these components are introduced in this paper. Then, a hybrid system model is established based on AVL-CRUISE. The simulations of fuel efficiency and exhaust emissions for both serial hybrid moped and conventional motorcycle is offered.
Technical Paper

Study on Improving the Fuel Economy of the Engine on EP Energy-Saving Vehicle

2008-06-23
2008-01-1780
“Soichiro Honda Cup, Honda Econo-Power Competition”, is an annual international energy-saving competition which is hosted by Honda Motor Co., Ltd. Till now it has been held 27 sessions. The aims of the EP project are: promoting the development of environmental protection, making full use of limit earth resources, challenging the fuel consumption limitation of vehicle. Tongji University's students' team has participated in the competition for seven consecutive times. In order to minimize the fuel consumption of the EP energy-saving vehicle, this paper focuses on the technical methods of improving the fuel economy of the engine. Firstly, the optimization of the carburetor. Secondly, for the purpose of improving combustion efficiency, researches on dual spark plug and compression ratio are done.
Technical Paper

Study on EP Energy-Saving Vehicle

2008-06-23
2008-01-1775
The price of fossil fuels and the increasing inexorable energy crisis have become vital issues for everyone. Tongji University EconoPower Racing Team was established to participate in the “Honda EconoPower Cup” annually. Every contestant in the competition must finish a certain distance in the fixed time, with the gasoline supplied by the committee. After that the committee will measure the fuel consumption of every team and calculate the distance per liter fuel (the farther the better) to determine the champion. In order to enhance the EP vehicle's achievement we've made some improvements, such as framework, body, engine's optimization and so on. In this passage we mainly state some details of our research approaches in framework, steering, transmission, shape and driving strategy. The main technologies were: friction reduction, lightweight, enhancement of power train efficiency, tire selection and driving strategy.
Technical Paper

Thermal Management of Power Batteries for Electric Vehicles Using Phase Change Materials: A Review

2016-04-05
2016-01-1204
As one of the most crucial components in electric vehicles, power batteries generate abundant heat during charging and discharging processes. Thermal management system (TMS), which is designed to keep the battery cells within an optimum temperature range and to maintain an even temperature distribution from cell to cell, is vital for the high efficiency, long calendar life and reliable safety of these power batteries. With the desirable features of low system complexity, light weight, high energy efficiency and good battery thermal uniformity, thermal management using composite phase change materials (PCMs) has drawn great attention in the past fifteen years. In the hope of supplying helpful guidelines for the design of the PCM-based TMSs, this work begins with the summarization of the most commonly applied heat transfer enhancement methods (i.e., the use of thermally conductive particles, metal fin, expanded graphite matrix and metal foam) for PCMs by different researchers.
Technical Paper

Study on Power Ratio Between the Front Motor and Rear Motor of Distributed Drive Electric Vehicle Based on Energy Efficiency Optimization

2016-04-05
2016-01-1154
For distributed drive electric vehicles (DDEVs), the influence of the power ratio between the front and rear motors on the energy efficiency characteristics is investigated. The power-train systems of the DDEVs in this study are divided into two different power-train configurations. The first is with its front axle driven by wheel-side motors and the rear axle driven by in-wheel motors, and the second is with both the front and rear axles driven by in-wheel motors. The energy consumption simulation and analysis platform of the DDEV is built with Matlab/Simulink. The parameters of the key components are determined by the experiments to ensure the validity of the data used in simulation. At the same time, the vehicle’s average energy efficiency coefficient is defined to describe the energy efficiency characteristics of the power-train strictly. Besides, the control strategies for driving and braking of the DDEV based on energy efficiency optimization are presented.
Technical Paper

Improvement on Energy Efficiency of the Spark Ignition System

2017-03-28
2017-01-0678
Future clean combustion engines tend to increase the cylinder charge to achieve better fuel economy and lower exhaust emissions. The increase of the cylinder charge is often associated with either excessive air admission or exhaust gas recirculation, which leads to unfavorable ignition conditions at the ignition point. Advanced ignition methods and systems have progressed rapidly in recent years in order to suffice the current and future engine development, and a simple increase of energy of the inductive ignition system does not often provide the desired results from a cost-benefit point of view. Proper design of the ignition system circuit is required to achieve certain spark performances.
Technical Paper

Performance Characteristics Analysis of Variable Expansion Ratio Expander Based on Organic Rankine Cycle for Automobile Waste Heat Recovery

2017-10-08
2017-01-2183
A reciprocating piston expander model based on organic Rankine cycle (ORC) is built for engine waste heat recovery. The expander characterizes by variable expansion ratio through adjusting working fluid injection timing. This paper investigates the effect of working fluid evaporating pressure, expansion ratio and clearance volume on the expander performance which mainly includes output power, equivalent recovery efficiency, total output power, expander efficiency, and the weighted efficiency of the expander, weighted heat recovery efficiency of the expander. The results demonstrate that the total output power and the equivalent heat recovery efficiency increase with working fluid evaporating pressure under overall operating conditions, while the increment is negligible. The expander reaches maximum total output power up to 83.4kW under c100 engine condition and 1.1MPa working fluid evaporating pressure within the research operating conditions.
Technical Paper

Effect of EGR Temperature on PFI Gasoline Engine Combustion and Emissions

2017-10-08
2017-01-2235
In order to investigate the impacts of recirculated exhaust gas temperature on gasoline engine combustion and emissions, an experimental study has been conducted on a turbocharged PFI gasoline engine. The engine was equipped with a high pressure cooled EGR system, in which different EGR temperatures were realized by using different EGR coolants. The engine ran at 2000 r/min and 3000 r/min, and the BMEP varied from 0.2MPa to 1.0MPa with the step of 0.2MPa. At each case, there were three conditions: 0% EGR, 10% LT-EGR, 10% HT-EGR. The results indicated that LT-EGR had a longer combustion duration compared with HT-EGR. When BMEP was 1.0 MPa, CA50 of HT-EGR advanced about 5oCA. However, CA50 of LT-EGR could still keep steady and in appropriate range, which guaranteed good combustion efficiency. Besides, LT-EGR had lower exhaust gas temperature, which could help to suppress knock. And its lower exhaust gas temperature could reduce heat loss. These contributed to fuel consumption reduction.
Technical Paper

Research on a New Electromagnetic Valve Actuator Based on Voice Coil Motor for Automobile Engines

2017-03-28
2017-01-1070
The electromagnetic valve actuator (EMVA) is considered a technological solution for decoupling between crankshaft and camshaft to improve engine performance, emissions, and fuel efficiency. Conventional EMVA consists of two electromagnets, an armature, and two springs has been proved to have the drawbacks of fixed lift, impact noise, complex control method and large power consumption. This paper proposes a new type of EMVA that uses voice coil motor (VCM) as electromagnetic valve actuator. This new camless valvetrain (VEMA) is characterized by simple structure, flexible controllable and low actuating power. VCM provides an almost flat force versus stroke curve that is very useful for high precision trajectory control to achieve soft landing within simple control algorithm.
Technical Paper

A Study of Parameter Inconsistency Evolution Pattern in Parallel-Connected Battery Modules

2017-03-28
2017-01-1194
Parallel-connected modules have been widely used in battery packs for electric vehicles nowadays. Unlike series-connected modules, the direct state inconsistency caused by parameter inconsistency in parallel modules is current and temperature non-uniformity, thus resulting in the inconsistency in the speed of aging among cells. Consequently, the evolution pattern of parameter inconsistency is different from that of series-connected modules. Since it’s practically impossible to monitor each cell’s current and temperature information in battery packs, considering cost and energy efficiency, it’s necessary to study how the parameter inconsistency evolves in parallel modules considering the initial parameter distribution, topology design and working condition. In this study, we assigned cells of 18650 format into several groups regarding the degree of capacity and resistance inconsistency. Then all groups are cycled under different environmental temperature and current profile.
Technical Paper

4WID/4WIS Electric Vehicle Modeling and Simulation of Special Conditions

2011-09-13
2011-01-2158
This paper introduces the characteristics of the 4 wheel independent driving/4 wheel independent steering (4WID/4WIS) electric vehicle (EV). Models of Subsystems and the vehicle are constructed based on Matlab/simulink. The vehicle model allows the inputs of different drive torques and steer angles of four wheels. The dynamic characteristics of drive motors and steer motors are considered, and also it can reflect the vehicle longitudinal dynamics change due to the increase of the mass and inertia of the four wheels. Besides, drive mode selection function that is unique to this type vehicle is involved. Simulations and analyses of crab, oblique driving and zero radius turning which are the special conditions of 4WID/4WIS EV are conducted. The results show that the model can reflect the dynamic response characteristics. The model can be used to the simulation analyses of handling, stability, energy saving and control strategies verification of 4WID/4WIS EVs.
Technical Paper

Control Optimization of a Charge Sustaining Hybrid Powertrain for Motorsports

2018-04-03
2018-01-0416
The automotive industry is aggressively pursuing fuel efficiency improvements through hybridization of production vehicles, and there are an increasing number of racing series adopting similar architectures to maintain relevance with current passenger car trends. Hybrid powertrains offer both performance and fuel economy benefits in a motorsport setting, but they greatly increase control complexity and add additional degrees of freedom to the design optimization process. The increased complexity creates opportunity for performance gains, but simulation based tools are necessary since hybrid powertrain design and control strategies are closely coupled and their optimal interactions are not straightforward to predict. One optimization-related advantage that motorsports applications have over production vehicles is that the power demand of circuit racing has strong repeatability due to the nature of the track and the professional skill-level of the driver.
Technical Paper

Experiments of Methanol-Gasoline SI Engine Performance and Simulation of Flexible Fuel Characteristic Field

2018-04-03
2018-01-0927
Due to the oil crisis and the requirements of energy saving and emission reduction, the research of alternative energy sources for sustainable development has made good progress. Methanol has proven to be a very suitable alternative clean fuel. Compared with gasoline, methanol has a wide range of source and the higher oxygen content and octane number and combustion efficiency, which are beneficial for the engine performance. The effect of different proportions of methanol-gasoline mixed fuel on the performance of SI engine was studied experimentally (lower proportion and higher proportion). It was found that the engine power performance, fuel economy and exhaust emissions were related to the methanol ratio under different operating conditions. In order to adapt to different operating conditions to improve the performance of methanol-gasoline engine, an on-board flexible fuel mixed system was proposed.
Technical Paper

Multidisciplinary Design Optimization of a Hatchback Structure

2012-04-16
2012-01-0780
Lightweight automobile has an important role in saving the energy, improving the fuel economy and reducing the exhaust emission. However, reducing the mass of the automobile need to meet the structural and NVH (Noise, Vibration and Harshness) performance requirements. With the rapid development of Computer Aided Engineering (CAE) technology, more and more people tend to research the complex engineering application problem by computer simulation. An important challenge in today's simulation is the Multidisciplinary Design Optimization (MDO) of an automobile, including mass, stiffness and modal etc. This paper presents a MDO study in a minicar hatchback.
Technical Paper

The Algorithmic Research of Multi-operating Mode Energy Management System

2013-04-08
2013-01-0988
The traditional energy management algorithm is mainly based on a single driving cycle, it is obvious that many factors might be often neglected by designer, such as different driving cycles would suit for different control strategies. But they tend to make decisions on the balance of torque distribution and battery power that based on a single driving cycle. Therefore, it is very difficult to achieve the optimal control in each case. In this paper we introduce a new design concept of Multi-operating mode energy management, a mathematical model of the energy management applied to a hybrid vehicle system is presented. Results of simulations using the model with the Multi-operating mode energy management were compared with results of simulations using a model with the single mode energy management, allowing the energy efficiency evaluation of the proposed energy management system.
Technical Paper

Instantaneous Optimization Energy Management for Extended-Range Electric Vehicle Based on Minimum Loss Power Algorithm

2013-09-08
2013-24-0073
Most of the existing energy management strategies for Extended-Range Electric Vehicles (E-REVs) are heuristic, which restricts coordination between the battery and the Range Extender. This paper presents an instantaneous optimization energy management strategy based on the Minimum Loss Power Algorithm (MLPA) for a fuel cell E-REV. An instantaneous loss power function of power train system is constructed by considering the charge and discharge efficiency of the battery, together with the working efficiency of the fuel cell Range Extender. The battery working mode and operating points of the fuel cell Range Extender are decided by an instantaneous optimization module (an artificial neural network) that aims to minimize the loss power function at each time step.
Technical Paper

Overtaking or Merging? Eco-Routing Decision and Speed Trajectory with Full Terrain Information

2018-04-03
2018-01-0038
With vehicle platooning becoming an important research field in recent years, it is now imperative to introduce platoons as part of the dynamic environment, considering overtaking and merging possibilities. This article studies optimal speed trajectories and longitudinal control with optimized energy efficiency for an autonomous vehicle with several preceding platoons and full terrain information. It aims at improving the energy efficiency of vehicles with Advanced Driver Assistance Systems (ADAS). A forward discrete dynamic programming (DDP) algorithm with distance as the discretization basis is used to derive speed trajectories in the trade-off between air drag reduction and energy saved by utilizing the road slope information. The problem is decomposed into decisions whether to overtake or to merge into the nearest platoon with the assumption of sufficient distance among platoons.
X