Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Experimental and Analytical Evaluations of a Torsio-Elastic Suspension for Off-Road Vehicles

2010-04-12
2010-01-0643
The ride performance potentials of a prototype torsio-elastic axle suspension for an off-road vehicle were investigated analytically and experimentally. A forestry vehicle was fitted with the prototype suspension at its rear axle to assess its ride performance benefits. Field measurements of ride vibration along the vertical, lateral, fore-aft, roll and pitch axes were performed for the suspended and an unsuspended vehicle, while traversing a forestry terrain. The measured vibration responses of both vehicles were evaluated in terms of unweighted and frequency-weighted rms accelerations and the acceleration spectra, and compared to assess the potential performance benefits of the proposed suspension. The results revealed that the proposed suspension could yield significant reductions in the vibration magnitudes transmitted to the operator's station.
Journal Article

Optimal Sensor Configuration and Fault-Tolerant Estimation of Vehicle States

2013-04-08
2013-01-0175
This paper discusses observability of the vehicle states using different sensor configurations as well as fault-tolerant estimation of these states. The optimality of the sensor configurations is assessed through different observability measures and by using a 3-DOF linear vehicle model that incorporates yaw, roll and lateral motions of the vehicle. The most optimal sensor configuration is adopted and an observer is designed to estimate the states of the vehicle handling dynamics. Robustness of the observer against sensor failure is investigated. A fault-tolerant adaptive estimation algorithm is developed to mitigate any possible faults arising from the sensor failures. Effectiveness of the proposed fault-tolerant estimation scheme is demonstrated through numerical analysis and CarSim simulation.
Technical Paper

Influence of Oil Compressibility of Fluidic Suspensions on Vehicle Roll Stability and Ride Dynamics

2010-10-05
2010-01-1893
This study investigates influence of compressible hydraulic fluid and suspension floating piston dynamics of fluidic suspensions on heavy vehicle roll stability and ride dynamics. Two fluidic suspension designs, including a single-gas-chamber strut and a novel twin-gas-chamber strut, are analyzed to develop the mathematical formulations of dynamic forces, upon considerations of hydraulic fluid compressibility and floating piston dynamics. Dynamic responses of the heavy vehicle with the different suspension configurations are then performed using a nonlinear roll plane vehicle model. The excitations arise from vehicle-road interactions as well as a steady steering maneuver. The results demonstrate that the compressibility characteristic of hydraulic fluid within a hydro-pneumatic suspension could affect the vehicle roll stability and ride dynamics, while the influence of suspension floating piston dynamics on vehicle dynamic responses is negligible.
X