Refine Your Search

Topic

Author

Search Results

Journal Article

An Assessment of the Influence of Gas Turbine Lubricant Thermal Oxidation Test Method Parameters Towards the Development of a New Engine Representative Laboratory Test Method

2013-12-20
2013-01-9004
In the development of a more accurate laboratory scale method, the ability to replicate the thermal oxidative degradation mechanisms seen in gas turbine lubricants, is an essential requirement. This work describes an investigation into the influence of key reaction parameters and the equipment set up upon extent and mechanism of oil degradation. The air flow rate through the equipment was found to be critical to both degradation rate and extent of volatilization loss from the system. As these volatile species can participate in further reactions, it is important that the extent to which they are allowed to leave the test system is matched, where possible, to the conditions in the gas turbine. The presence of metal specimens was shown to have a small influence on the rate of degradation of the lubricant. Loss of metal from the copper and silver specimens due to the mild corrosive effect of the lubricant was seen.
Journal Article

Experimental Investigation of Different Blends of Diesel and Gasoline (Dieseline) in a CI Engine

2014-10-13
2014-01-2686
Combustion behaviour and emissions characteristics of different blending ratios of diesel and gasoline fuels (Dieseline) were investigated in a light-duty 4-cylinder compression-ignition (CI) engine operating on partially premixed compression ignition (PPCI) mode. Experiments show that increasing volatility and reducing cetane number of fuels can help promote PPCI and consequently reduce particulate matter (PM) emissions while oxides of nitrogen (NOx) emissions reduction depends on the engine load. Three different blends, 0% (G0), 20% (G20) and 50% (G50) of gasoline mixed with diesel by volume, were studied and results were compared to the diesel-baseline with the same combustion phasing for all experiments. Engine speed was fixed at 1800rpm, while the engine load was varied from 1.38 to 7.85 bar BMEP with the exhaust gas recirculation (EGR) application.
Journal Article

The Use of a Partial Flow Filter to Assist the Diesel Particulate Filter and Reduce Active Regeneration Events

2014-10-13
2014-01-2806
This study investigates the potential of using a partial flow filter (PFF) to assist a wall flow diesel particulate filter (DPF) and reduce the need for active regeneration phases that increase engine fuel consumption. First, the filtration efficiency of the PFF was studied at several engine operating conditions, varying the filter space velocity (SV), through modification of the exhaust gas flow rate, and engine-out particulate matter (PM) concentration. The effects of these parameters were studied for the filtration of different particle size ranges (10-30 nm, 30-200 nm and 200-400 nm). For the various engine operating conditions, the PFF showed filtration efficiency over 25% in terms of PM number and mass. The PFF filtration behaviour was also investigated at idle engine operation producing a high concentration of nuclei particulates for which the filter was able to maintain 60% filtration efficiency.
Technical Paper

Experimental Investigation of Injection Pressure Fluctuations Employing Alternative Fuels

2020-09-15
2020-01-2122
Injection pressure oscillations are proven to determine considerable deviations from the expected mass flow rate, leading to the jet velocities non-uniformity, which in turn implies the uneven spatial distribution of A/F ratio. Furthermore, once the injector is triggered, these oscillations might lead the rail pressure to experience a decreasing stage, to the detriment of spray penetration length, radial propagation and jet break-up timing. This has urged the research community to develop models predicting injection-induced pressure fluctuations within the rail. Additionally, several devices have been designed to minimize and eliminate such fluctuations. However, despite the wide literature dealing with the injection-induced pressure oscillations, many aspects remain still unclear. Moreover, the compulsory compliance with environmental regulations has shifted focus onto alternative fuels, which represent a promising pathway for sustainable vehicle mobility.
Journal Article

The Effect of Exhaust Throttling on HCCI - Alternative Way to Control EGR and In-Cylinder Flow

2008-06-23
2008-01-1739
Homogeneous Charge Compression Ignition (HCCI) has emerged as a promising technology for reduction of exhaust emissions and improvement of fuel economy of internal combustion engines. There are generally two proposed methods of realizing the HCCI operation. The first is through the control of gas temperature in the cylinder and the second is through the control of chemical reactivity of the fuel and air mixture. EGR trapping, i.e., recycling a large quantity of hot burned gases by using special valve-train events (e.g. negative valve overlap), seems to be practical for many engine configurations and can be combined with any of the other HCCI enabling technologies. While this method has been widely researched, it is understood that the operating window of the HCCI engine with negative valve overlap is constrained, and the upper and lower load boundaries are greatly affected by the in-cylinder temperature.
Journal Article

Investigation on Transient Emissions of a Turbocharged Diesel Engine Fuelled by HVO Blends

2013-04-08
2013-01-1307
Transient emissions of a turbocharged three-litre V6 diesel engine fuelled by hydrogenated vegetable oil (HVO) blends were experimentally investigated and compared with transient emissions of diesel as reference. The transient emissions measurements were made by highly-dynamic emissions instrumentations including Cambustion HFR500, CLD500 and DMS500 particulate analyzer. The HVO blends used in this study were 30% and 60% of HVO in diesel by volume. The transient conditions were simulated by load increases over 5 s, 10 s and 20 s durations at a constant engine speed. The particulate, NO, HC concentrations were measured to investigate the mechanism of emission formation under such transient schedules. The results showed that as the load increased, NO concentrations initially had a small drop before dramatically increasing for all the fuels investigated which can be associated with the turbocharger lag during the load transient.
Journal Article

Modelling of Soot Oxidation by NO2 in a Diesel Particulate Filter

2011-08-30
2011-01-2083
Two approaches were adopted to study soot oxidation by NO₂; firstly microreactor tests were performed on soot produced by a soot generator over a range of NO₂ concentrations and temperatures. This enabled measurement to be made under well-controlled conditions. Secondly, soot oxidation measurements were made on an engine bench to obtain data under more realistic, if less controlled, conditions. In the microreactor work NO₂ consumption by soot oxidation and the selectivity of the soot oxidation to CO and CO₂ were measured. The latter was found to vary only slightly with temperature and to be independent of NO₂ concentration. By modeling this data using a 1-dimensional model, rate equations for the soot-NO₂ reaction were determined. These were then tested against the engine data. The soot used in this study was characterized by thermogravimetric analysis, N₂ physisorption and transmission electron microscopy.
Journal Article

An Investigation into the Characteristics of DISI Injector Deposits Using Advanced Analytical Methods

2014-10-13
2014-01-2722
There is an increasing recognition of injector deposit (ID) formation in fuel injection equipment as direct injection spark ignition (DISI) engine technologies advance to meet increasingly stringent emission legislation and fuel economy requirements. While it is known that the phenomena of ID in DISI engines can be influenced by changes in fuel composition, including increasing usage of aliphatic alcohols and additive chemistries to enhance fuel performance, there is however still a great deal of uncertainty regarding the physical and chemical structure of these deposits, and the mechanisms of deposit formation. In this study, a mechanical cracking sample preparation technique was developed to assess the deposits across DISI injectors fuelled with gasoline and blends of 85% ethanol (E85).
Journal Article

Low Ambient Temperature Effects on a Modern Turbocharged Diesel engine running in a Driving Cycle

2014-10-13
2014-01-2713
Engine transient operation has attracted a lot of attention from researchers due to its high frequency of occurrence during daily vehicle operation. More emissions are expected compared to steady state operating conditions as a result of the turbo-lag problem. Ambient temperature has significant influences on engine transients especially at engine start. The effects of ambient temperature on engine-out emissions under the New European Driving Cycle (NEDC) are investigated in this study. The transient engine scenarios were carried out on a modern 3.0 L, V6 turbocharged common rail diesel engine fuelled with winter diesel in a cold cell within the different ambient temperature ranging between +20 °C and −7 °C. The engine with fuel, coolant, combustion air and lubricating oil were soaked and maintained at the desired test temperatures during the transient scenarios.
Journal Article

High Speed Imaging Study on the Spray Characteristics of Dieseline at Elevated Temperatures and Back Pressures

2014-04-01
2014-01-1415
Dieseline combustion as a concept combines the advantages of gasoline and diesel by offline or online blending the two fuels. Dieseline has become an attractive new compression ignition combustion concept in recent years and furthermore an approach to a full-boiling-range fuel. High speed imaging with near-parallel backlit light was used to investigate the spray characteristics of dieseline and pure fuels with a common rail diesel injection system in a constant volume vessel. The results were acquired at different blend ratios, and at different temperatures and back pressures at an injection pressure of 100MPa. The penetrations and the evaporation states were compared with those of gasoline and diesel. The spray profile was analyzed in both area and shape with statistical methods. The effect of gasoline percentage on the evaporation in the fuel spray was evaluated.
Technical Paper

Particulate Emissions from a Gasoline Homogeneous Charge Compression Ignition Engine

2007-04-16
2007-01-0209
Particulate Emissions from Homogeneous Charge Compression Ignition (HCCI) combustion are routinely assumed to be negligible. It is shown here that this is not the case when HCCI combustion is implemented in a direct injection gasoline engine. The conditions needed to sustain HCCI operation were realized using the negative valve overlap method for trapping high levels of residual exhaust gases in the cylinder. Measurements of emitted particle number concentration and electrical mobility diameter were made with a Cambustion DMS500 over the HCCI operating range possible with this hardware. Emissions of oxides of nitrogen, carbon monoxide and unburned hydrocarbons were also measured. These data are presented and compared with similar measurements made under conventional spark ignition (SI) operation in the same engine. Under both SI and HCCI operation, a significant accumulation mode was detected with particle equivalent diameters between 80 and 100 nm.
Technical Paper

CFD Analysis of Air Intake System with Negative Pressure on Intake Grill

2008-06-23
2008-01-1643
The objective of the current research was to predict and analyze the flow through the grill of air intake system which is positioned behind the front wheel arch of vehicle. Most of the vehicle used today locates the grill of air intake at the front side so to acquire benefit of ram effect. In some cases, however, the grill is located behind the vehicle to improve wading performance. The geometry of air intake system of Land Rover Freelander was used in the modelling approach. The study was focused on different flow speeds on the grill at high load operation where the air speed at the grill side is high and creates negative pressure. The CFD results are validated against experimental data of steady flow test bench.
Technical Paper

Performance, Emissions and Exhaust-Gas Reforming of an Emulsified Fuel: A Comparative Study with Conventional Diesel Fuel

2009-06-15
2009-01-1809
The fuel reforming technology has been extensively investigated as a way to produce hydrogen on-board a vehicle that can be utilized in internal combustion engines, fuel cells and aftertreatment technologies. Maximization of H2 production in the reforming process can be achieved when there is optimized water (steam) addition for the different reforming temperatures. A way to increase the already available water quantity on-board a vehicle (i.e. exhaust gas water content) is by using emulsified fuel (e.g. water-diesel blend). This study presents the effect of an emulsified diesel fuel (a blend of water and diesel fuel with an organic surfactant to make the mixture stable) on combustion in conjunction with exhaust gas assisted fuel reforming on a compression ignition engine. No engine modification was required to carry out these tests. The emulsified diesel fuel consisted of about 80% (mass basis) of conventional ultra low sulphur diesel (ULSD) fuel and fixed water content.
Technical Paper

Engine Performance and Emissions from Dual Fuelled Engine with In-Cylinder Injected Diesel Fuels and In-Port Injected Bioethanol

2009-06-15
2009-01-1853
Biofuels development and specification are currently driven by the engine (mainly gasoline- and diesel-type) technology, existing fossil fuel specification and availability of feedstock. The ability to use biofuels with conventional fuels without jeopardising the standard fuel specifications is a very effective means for the implementation of these fuels. In this work the effect of dual fuelling with in-cylinder injected ULSD fuel or synthetic second generation biofuels (a Gas-To-Liquid GTL fuel as a surrogate of these biofuels as its composition, specifications and production process are very similar to second generation biofuels) and with inlet port injected bioethanol on the engine performance and emissions were investigated. The introduction of anhydrous bioethanol improved the NOx and smoke emissions, but increased total hydrocarbons and carbon monoxide.
Technical Paper

Effect of Fuel Temperature on Performance and Emissions of a Common Rail Diesel Engine Operating with Rapeseed Methyl Ester (RME)

2009-06-15
2009-01-1896
The paper presents analysis of performance and emission characteristics of a common rail diesel engine operating with RME, with and without EGR. In both cases, the RME fuel was pre-heated in a heat exchanger to control its temperature before being pumped to the common rail. The studied parameters include the in-cylinder pressure history, rate of heat release, mass fraction burned, and exhaust emissions. The results show that when the fuel temperature increases and the engine is operated without EGR, the brake specific fuel consumption (bsfc) decreases, engine efficiency increases and NOx emission slightly decreases. However, when EGR is used while fuel temperature is increased, the bsfc and engine efficiency is independent of fuel temperature while NOx slightly increases.
Technical Paper

Activity of Prototype Catalysts on Exhaust Emissions from Biodiesel Fuelled Engines

2008-10-06
2008-01-2514
A prototype catalyst has been developed and integrated within the aftertreatment exhaust system to control the HC, CO, PM and NOx emissions from diesel exhaust gas. The catalyst activity in removing HC and nano-particles was examined with exhaust gas from a diesel engine operating on biodiesel - Rapeseed Methyl Ester (RME). The tests were carried out at steady-state conditions for short periods of time, thus catalyst tolerance to sulphur was not examined. The prototype catalyst reduced the amount of hydrocarbons (HC) and the total PM. The quantity of particulate with electrical mobility diameter in nucleation mode size < 10nm, was significantly reduced over the catalyst. Moreover, it was observed that the use of EGR (20% vol.) for the biodiesel fuelled engine significantly increases the particle concentration in the accumulation mode with simultaneous reduction in the particle concentration in the nuclei mode.
Technical Paper

Diesel Engine Performance and Emissions when First Generation Meets Next Generation Biodiesel

2009-06-15
2009-01-1935
Limits on the total future potential of biodiesel fuel due to the availability of raw materials mean that ambitious 20% fuel replacement targets will need to be met by the use of both first and next generation biodiesel fuels. The use of higher percentage biodiesel blends requires engine recalibration, as it affects engine performance, combustion patterns and emissions. Previous work has shown that the combustion of 50:50 blends of biodiesel fuels (first generation RME and next generation synthetic fuel) can give diesel fuel-like performance (i.e. in-cylinder pressure, fuel injection and heat release patterns). This means engine recalibration can be avoided, plus a reduction in all the regulated emissions. Using a 30% biodiesel blend (with different first and next generation proportions) mixed with Diesel may be a more realistic future fuel.
Technical Paper

Comparative Experimental Study on Microscopic Spray Characteristics of RME, GTL and Diesel

2010-10-25
2010-01-2284
In this paper, the microscopic spray characteristics of diesel, Rapeseed Methyl Ester (RME) and Gas-to-Liquid (GTL) fuel, were studied at different injection pressures and measuring positions using Phase Doppler Anemometry (PDA) technique and the velocity development and size distributions of the fuel droplets were analysed in order to understand spray atomisation process. The injection pressures ranged from 80MPa to 150MPa, and the measuring position varied from 20mm to 70mm downstream the nozzle. It was found that the data rate is quite low in the near nozzle region and at high injection pressure. Sauter Mean Diameter (SMD) of all fuels obviously decreases when the injection pressure increases from 80MPa to 120MPa; but the injection pressure has little promotion on the axial velocity of droplets.
Technical Paper

Residual Gas Trapping for Natural Gas HCCI

2004-06-08
2004-01-1973
With the high auto ignition temperature of natural gas, various approaches such as high compression ratios and/or intake charge heating are required for auto ignition. Another approach utilizes the trapping of internal residual gas (as used before in gasoline controlled auto ignition engines), to lower the thermal requirements for the auto ignition process in natural gas. In the present work, the achievable engine load range is controlled by the degree of internal trapping of exhaust gas supplemented by intake charge heating. Special valve strategies were used to control the internal retention of exhaust gas. Significant differences in the degree of valve overlap were necessary when compared to gasoline operation at the same speeds and loads, resulting in lower amounts of residual gas observed. The dilution effect of residual gas trapping is hence reduced, resulting in higher NOx emissions for the stoichiometric air/fuel ratio operation as compared to gasoline.
Technical Paper

Millimetre-Wave Automotive Radar Advance Path Measurement

2002-03-04
2002-01-0820
Millimetre wave radar sensors are being actively developed for automotive applications including Intelligent Cruise Control (ICC), Collision Warning (CW), and Collision Avoidance (CA). Knowledge of the road geometry is of fundamental importance to these future intelligent automotive systems. The interest in such systems is evidenced by manufacturers now starting to incorporate radars in production luxury vehicles. Determination of the road geometry, day and night, under all weather conditions, is a challenging problem requiring both fundamental research and systems studies. Current automotive radar systems rely heavily on the use of extrapolating yaw rate data generated within the vehicle to produce a prediction of the path of the road ahead. This use of historical data is only satisfactory if the road trajectory is uniform. Sudden discontinuities in the path, such as bends, cause this method of path prediction to produce significant errors.
X