Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Development and Validation of a Model for Predicting Hand Prehensile Movements

2006-07-04
2006-01-2329
A prediction model for hand prehensile movements was developed and validated. The model is based on a new approach that blends forward dynamics and a simple parametric control scheme. In the development phase, model parameters were first estimated using a set of hand grasping movement data, and then statistically analyzed. In the validation phase, the model was applied to novel conditions created by varying the subject group and size of the object grasped. The model performance was evaluated by the prediction errors under various novel conditions as compared to the benchmark values with no extrapolation. Analyses of the model parameters led to insights into human movement production and control. The resulting model also offers computational simplicity and efficiency, a much desired attribute for digital applications.
Technical Paper

Redundancy Testing and Cost Assessment for Environmental Control and Life Support Systems

2009-07-12
2009-01-2495
Environmental control and life support systems are usually associated with high demands for performance robustness and cost efficiency. However, considering the complexity of such systems, determining the balance between those two design factors is nontrivial for even the simplest space missions. Redundant design is considered as a design optimization dilemma since it usually means higher system reliability as well as system cost. Two coupled fundamental questions need to be answered. First, to achieve certain level of system reliability, what is the corresponding system cost? Secondly, given a budget to improve system reliability, what is the most efficient design for component or subsystem redundancy? The proposed analysis will continue from previous work performed on series systems by expanding the scope of the analysis and testing parallel systems. Namely, the online and offline redundancy designs for a Lunar Outpost Mission are under consideration.
Technical Paper

Reconfigurable Control System Design for Future Life Support Systems

2008-06-29
2008-01-1976
A reconfigurable control system is an intelligent control system that detects faults within the system and adjusts its performance automatically to avoid mission failure, save lives, and reduce system maintenance costs. The concept was first successfully demonstrated by NASA between December 1989 and March 1990 on the F-15 flight control system (SRFCS), where software was integrated into the aircraft's digital flight control system to compensate for component loss by reconfiguring the remaining control loop. This was later adopted in the Boeing X-33. Other applications include modular robotics, reconfigurable computing structure, and reconfigurable helicopters. The motivation of this work is to test such control system designs for future long term space missions, more explicitly, the automation of life support systems.
Technical Paper

Testing Heuristic Tools for Life Support System Analysis

2007-07-09
2007-01-3225
BioSim is a simulation tool which captures many basic life support functions in an integrated simulation. Conventional analyses can not efficiently consider all possible life support system configurations. Heuristic approaches are a possible alternative. In an effort to demonstrate efficacy, a validating experiment was designed to compare the configurational optima discovered by heuristic approaches and an analytical approach. Thus far, it is clear that a genetic algorithm finds reasonable optima, although an improved fitness function is required. Further, despite a tight analytical fit to data, optimization produces disparate results which will require further validation.
Technical Paper

Continuous Multicomponent Fuel Film Vaporization Model for Multidimensional Engine Modeling

2005-04-11
2005-01-0209
A multicomponent fuel film vaporization model using continuous thermodynamics is developed for multidimensional spray and wall film modeling. The vaporization rate is evaluated using the turbulent boundary-layer assumption and a quasi-steady approximation. Third-order polynomials are used to model the fuel composition profiles and the temperature within the liquid phase in order to predict accurate surface properties that are important for evaluating the mass and moment vaporization rates and heat flux. By this approach, the governing equations for the film are reduced to a set of ordinary differential equations and thus offer a significant reduction in computational cost while maintaining adequate accuracy compared to solving the governing equations for the film directly.
Technical Paper

Using R744 (CO2) to Cool an Up-Armored M1114 HMMWV

2005-05-10
2005-01-2024
The US Army uses a light tactical High-Mobility Multi-Purpose Wheeled Vehicle (HMMWV) which, due to the amount of armor added, requires air conditioning to keep its occupants comfortable. The current system uses R134a in a dual evaporator, remote-mounted condenser, engine-driven compressor system. This vehicle has been adapted to use an environmentally friendly refrigerant (carbon dioxide) to provide performance, efficiency, comfort and logistical benefits to the Army. The unusual thermal heat management issues and the fact that the vehicle is required to operate under extreme ambient conditions have made the project extremely challenging. This paper is a continuation of work presented at the SAE Alternate Refrigerants Symposium held in Phoenix last June [1].
Technical Paper

Analytical Descriptions of Service Loading Suitable for Fatigue Analysis

1997-04-08
971535
Service loading histories have the same general character for an individual route and the magnitudes vary from driver to driver. Both the magnitude and character of the loading history change from route to route and a linear scaling of one loading history does not characterize the variability of usage over a wide range of operating conditions. In this paper a technique for measuring and extrapolating cumulative exceedance diagrams to quantify the distribution of service loading in a vehicle is described. Monte Carlo simulations are coupled with the local stress strain approach for fatigue to obtain distributions of service loading. Fatigue life estimates based on the original loading histories are compared to those obtained from statistical descriptions of exceedance diagrams.
Technical Paper

Smart Icing Systems for Aircraft Icing Safety

2003-06-16
2003-01-2100
Aircraft incidents and accidents in icing are often the result of degradation in performance and control. However, current ice sensors measure the amount of ice and not the effect on performance and control. No processed aircraft performance degradation information is available to the pilot. In this paper research is reported on a system to estimate aircraft performance and control changes due to ice, then use this information to automatically operate ice protection systems, provide aircraft envelope protection and, if icing is severe, adapt the flight controls. Key to such a safety system would be he proper communication to, and coordination with, the flight crew. This paper reviews the basic system concept, as well as the research conducted in three critical areas; aerodynamics and flight mechanics, aircraft control and identification, and human factors.
Technical Paper

Estimating the Expected Effectiveness of Enhanced Ground Proximity Warning Systems in Reducing Controlled Flight Into Terrain by Aircraft Operating under Part-135

2000-04-11
2000-01-2105
In order to reduce “Controlled Flight Into Terrain” (CFIT) accidents the FAA proposed, in 1998, the regulation that Enhanced Ground Proximity Warning Systems (EGPWS) should be installed in all turbine powered aircraft with 6 or more seats for passengers, operating under Federal Aviation Regulation Part-135 (commuter and charter operations). We analyzed all Part-135 crashes of this type using NTSB aviation accident data from 1983 to 1998. There were 15 crashes involving CFIT. We asked 26 experienced pilots to examine the brief narratives of the crashes and to estimate the probability that had the aircraft been equipped with EGPWS, the crews would have avoided the crashes. Based on the ratings, the median probability that Part 135 crashes would be avoided using EGPWS was 59%. We describe the nature of the crashes, the human factors involved and the reasons why the enhanced terrain warning is only partly effective.
Technical Paper

Biomechanical Realism Versus Algorithmic Efficiency: A Trade-off in Human Motion Simulation Modeling

2001-06-26
2001-01-2090
The purpose this paper is to delineate why there exists a trade-off between biomechanical realism and algorithmic efficiency for human motion simulation models, and to illustrate how empirical human movement data and findings can be integrated with novel modeling techniques to overcome such a realism-efficiency tradeoff. We first review three major classes of biomechanical models for human motion simulation. The review of these models is woven together by a common fundamental problem of redundancy—kinematic and/or muscle redundancy. We describe how this problem is resolved in each class of models, and unveil how the trade-off arises, that is, how the computational demand associated with solving the problem is amplified as a model evolves from small scale to large scale, or from less realism to more realism.
Technical Paper

Multicomponent Liquid and Vapor Fuel Distribution Measurements in the Cylinder of a Port-Injected, Spark-Ignition Engine

2000-03-06
2000-01-0243
A 2.5L, V-6, port-injected, spark-ignition engine was modified for optical access by separating the head from the block and installing a Bowditch extended piston with a fused-silica top and a fused-silica liner in one of the cylinders. Two heads were employed in the study. One produced swirl and permitted modulation of the swirl level, and another produced a tumbling flow in the cylinder. Planar laser-induced exciplex fluorescence, which allows the simultaneous, but separate, imaging of liquid and vapor fuel, was extended to capture components of different volatilities in a model fuel designed to simulate the distillation curve of a typical gasoline. The exciplex fluorescence technique was calibrated in a separate cell where careful control of mixture composition, temperature and pressure was possible. The results show that large-scale motion induced during intake is critical for good mixing during the intake and compression strokes.
Technical Paper

Determining the Value of Vehicle Attributes Using a PC Based Tool

1997-02-24
970763
Product engineers and product planners are routinely faced with trade-off decisions involving the cost of adding a product feature or modifying an existing feature versus its added value to the customer. The purpose of this paper is to assess the use of a personal computer (PC) for surveying respondents' willingness to pay (WTP) for four options - two-tone color, 4x4 drive, sporty trim package, and extended cab -- available on the base 1997 Ford F-150 truck. The results show that the respondents' stated WTP reflected the value of the options as determined from their prices and fraction of sales.
Technical Paper

Oversteer/Understeer Characteristics of a Locked Differential

1994-12-01
942485
The type of differential used in a vehicle has an important and often-neglected effect on handling performance. This is particularly important in racing applications, such as in IndyCar racing, in which the type of differential chosen depends on the course being raced (superspeedway ovals, short ovals, temporary street courses and permanent road courses). In the present work, we examine the effect of a locked rear differential on oversteer/understeer behavior. Using a linear tire model, it is shown that employing a locked differential adds a constant understeer offset to the steering wheel angle (SWA) -v- lateral acceleration vehicle signature. A computer simulation of steady-state cornering behavior showed that the actual effect is much more complicated, and is strongly influenced by static weight distribution, front/rear roll couple distribution, available traction and the radius of the turn being negotiated.
Technical Paper

Software Reliability Growth Modeling: Comparison between Non-Linear- Regression Estimation and Maximum-Likelihood-Estimator Procedures

2018-09-10
2018-01-1772
Automotive software complexity has been growing rapidly with time. The demand for automation in automotive segment including autonomous automobiles and software based products has caught the attention of researchers. Hence, it is necessary to check the complexity of automotive software and their reliability growth. Testing in the field of software artifact is resource intensive exercise. If project managers are able to put forward testing activities well then the testing resource consumptions may be much more resource/cost efficient. Reliability can be estimated during testing phase of software using software reliability growth models (SRGMs). A software package Computer Aided Software Reliability Estimation (CASRE) has many important SRGMs. These SRGMs are based on Non-Homogeneous Poisson Process (NHPP), Markov process or Bayesian models.
Journal Article

Flow Visualization and Experimental Measurement of Compressor Oil Separator

2018-04-03
2018-01-0067
This article presents basic separation mechanisms with coalescing/impinging separators studied as the add-on to current popular centrifugal designs. The coalescence and impingement of oil on wire mesh and wave-plates are visualized and tested to investigate the impact of geometry and flow conditions on oil separation efficiency. Re-entrainment phenomenon is explained based on the mass balance. Oil mist flow at the swashplate reciprocating compressor discharge is quantified by video processing method to provide detailed information of the oil droplets. The physics behind oil separator is illustrated by visualization and measurement in this study, which gives useful guidelines for oil separator design and operation. The flow visualization shows the details of oil passing through different oil separation structures. Videos are quantified to provide information like droplet size distribution and liquid volume fraction.
Technical Paper

Modeling of Quasi-1D Multi-Component Fuel Droplet Vaporization using Discrete Approach with Experimental Validation

2018-04-03
2018-01-0287
An efficient multi-component fuel droplet vaporization model has been developed in this work using discrete approach. The precise modeling of droplet vaporization process is divided into two parts: vapor-phase and liquid-phase sub-models. Temporal evolution of flow inside the droplet is considered to describe the transient behavior introduced by the slow diffusion process. In order to account for the internal circulation motion, surface regression and finite diffusion without actually resolving the spatial governing equations within the liquid phase, a set of ordinary differential equations is applied to describe the evolution of the non-uniform distributions of universal diffusional variables, i.e. temperature and species mass fraction. The differences between the droplet surface and bulk mean states are modeled by constructing a quasi-1D frame; the effect of the internal circulations is taken into consideration by using the effective diffusivity rather than physical diffusivity.
Technical Paper

The Effect of In-Cylinder Temperature on the Ignition Initiation Location of a Pre-Chamber Generated Hot Turbulent Jet

2018-04-03
2018-01-0184
Ignition location is one of the important factors that affect the thermal efficiency, exhaust emissions and knock sensitivity in premixed-charge ignition engines. However, the ignition initiation locations of pre-chamber generated turbulent jet ignition, which is a promising ignition enhancement method, are not clearly understood due to the complex physics behind it. Motivated by this, the ignition initiation location of a transient turbulent jet in a constant volume combustor is analyzed by the use of computational fluid dynamics (CFD) simulations. In the CFD simulations of this work, commercial codes KIVA-3 V release 2 and an in-house-developed chemical solver with a detailed mechanism for H2/air mixtures are used. Comparisons are performed between simulated and experimental ignition initiation locations, and they agree well with one another. A detailed parametric study of the influence of in-cylinder temperature on the ignition initiation location is also performed.
X