Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Compression Ratio Effects on Performance, Efficiency, Emissions and Combustion in a Carbureted and PFI Small Engine

2007-08-05
2007-01-3623
This paper compares the performance, efficiency, emissions and combustion parameters of a prototype two cylinder 430 cm3 engine which has been tested in a variety of normally aspirated (NA) modes with compression ratio (CR) variations. Experiments were completed using 98-RON pump gasoline with modes defined by alterations to the induction system, which included carburetion and port fuel injection (PFI). The results from this paper provide some insight into the CR effects for small NA spark ignition (SI) engines. This information provides future direction for the development of smaller engines as engine downsizing grows in popularity due to rising oil prices and recent carbon dioxide (CO2) emission regulations. Results are displayed in the engine speed, manifold absolute pressure (MAP) and CR domains, with engine speeds exceeding 10000 rev/min and CRs ranging from 9 to 13. Combustion analysis is also included, allowing mass fraction burn (MFB) comparison.
Technical Paper

Comparing the Performance and Limitations of a Downsized Formula SAE Engine in Normally Aspirated, Supercharged and Turbocharged Modes

2006-11-13
2006-32-0072
This paper compares the performance of a small two cylinder, 430 cm3 engine which has been tested in a variety of normally aspirated (NA) and forced induction modes on 98-RON pump gasoline. These modes are defined by variations in the induction system and associated compression ratio (CR) alterations needed to avoid knock and maximize volumetric efficiency (ηVOL). These modes included: (A) NA with carburetion (B) NA with port fuel injection (PFI) (C) Mildly Supercharged (SC) with PFI (D) Highly Turbocharged (TC) with PFI The results have significant relevance in defining the limitations for small downsized spark ignition (SI) engines, with power increases needed via intake boosting to compensate for the reduced swept volume. Performance is compared in the varying modes with comparisons of brake mean effective pressure (BMEP), brake power, ηVOL, brake specific fuel consumption (BSFC) and brake thermal efficiency (ηTH).
Technical Paper

Spatial and Temporal Temperature Distributions in a Spark Ignition Engine Piston at WOT

2007-04-16
2007-01-1436
Two coupled finite element analysis (FEA) programs were written to determine the transient and steady state temperature distribution in a spark ignition engine piston. The programs estimated the temperatures at each crank angle degree (CAD) through warm-up to thermal steady state. A commercial FEA code was used to combine the steady state temperature distribution with the mechanical loads to find the stress response at each CAD for one complete cycle. The first FEA program was a very fast and robust non-linear thermal code to estimate spatial and time resolved heat flux from the combustion chamber to the aluminum alloy piston crown. This model applied the energy conservation equation to the near wall gas and includes the effects of turbulence, a propagating heat source, and a quench layer allowing estimates of local, instantaneous near-wall temperature gradients and the resulting heat fluxes.
Technical Paper

Experimental and Numerical Study of an Air Assisted Fuel Injector for a D.I.S.I. Engine

2007-04-16
2007-01-1415
The transient behaviour of the fuel spray from an air assisted fuel injector has been investigated both numerically and experimentally in a Constant Volume Chamber (CVC) and an optical engine. This two phase injector is difficult to analyse numerically and experimentally because of the strong coupling between the gas and liquid phases. The gas driven atomization of liquid fuel involves liquid film formation, separation and break up and also liquid droplet coalescence, break up, splashing, bouncing, evaporation and collision. Furthermore, the liquid phase is the dominant phase in many regions within the injector. Experimental results are obtained by using Mie scattering, Laser Induced Fluorescence (LIF) and Laser Sheet Drop sizing (LSD) techniques. Computational results are obtained by using a mixed Lagrangian/Eulerian approach in a commercial Computational Fluid Dynamic (CFD) code.
Technical Paper

Comparison of Pfi and Di Superbike Engines

2008-12-02
2008-01-2943
Gasoline Direct Injection (DI) is a technique that was successful in motor sports several decades ago and is now relatively popular in passenger car applications only. DI gasoline fuel injectors have been recently improved considerably, with much higher fuel flow rates and much finer atomization enabled by the advances in fuel pressure and needle actuation. These improved injector performance and the general interest in reducing fuel consumption also in motor sports have made this option interesting again. This paper compares Port Fuel Injection (PFI) and DI of gasoline fuel in a high performance, four cylinder spark ignition engine for super bike racing. Computations are performed with a code for gas exchange, heat transfer and combustion, simulating turbulent combustion and knock.
Technical Paper

A Comparison of Four Methods for Determining the Octane Index and K on a Modern Engine with Upstream, Port or Direct Injection

2017-03-28
2017-01-0666
Combustion in modern spark-ignition (SI) engines is increasingly knock-limited with the wide adoption of downsizing and turbocharging technologies. Fuel autoignition conditions are different in these engines compared to the standard Research Octane Number (RON) and Motor Octane Numbers (MON) tests. The Octane Index, OI = RON - K(RON-MON), has been proposed as a means to characterize the actual fuel anti-knock performance in modern engines. The K-factor, by definition equal to 0 and 1 for the RON and MON tests respectively, is intended to characterize the deviation of modern engine operation from these standard octane tests. Accurate knowledge of K is of central importance to the OI model; however, a single method for determining K has not been well accepted in the literature.
Technical Paper

Effects of Engine Speed on Spray Behaviors of the Engine Combustion Network “Spray G” Gasoline Injector

2018-04-03
2018-01-0305
Non-reacting spray behaviors of the Engine Combustion Network “Spray G” gasoline fuel injector were investigated at flash and non-flash boiling conditions in an optically accessible single cylinder engine and a constant volume spray chamber. High-speed Mie-scattering imaging was used to determine transient liquid-phase spray penetration distances and observe general spray behaviors. The standardized “G2” and “G3” test conditions recommended by the Engine Combustion Network were matched in this work and the fuel was pure iso-octane. Results from the constant volume chamber represented the zero (stationary piston) engine speed condition and single cylinder engine speeds ranged from 300 to 2,000 RPM. As expected, the present results indicated the general spray behaviors differed significantly between the spray chamber and engine. The differences must be thoughtfully considered when applying spray chamber results to guide spray model development for engine applications.
Technical Paper

Effects of a Wide Range of Drive Cycles on the Emissions from Vehicles of Three Levels of Technology

1995-02-01
950221
Exhaust emission tests were performed on a fleet of vehicles comprising a range of engine technology from leaded fuel control methods to closed loop three-way catalyst meeting 1992 U.S. standards but marketed in Australia. Each vehicle was tested to 5 different driving cycles including the FTP cycles and steady speed driving. Research had shown that for hot-start operation the major driving pattern parameters which influence fuel consumption and exhaust emissions are average speed and PKE (the positive acceleration kinetic energy per unit distance). Plots from analysis of micro-trip fuel use and emissions rates from the test cycles may be presented as contours in PKE. It follows that the micro trip emissions from a range of driving cycles including, regulated e.g. FTP city and unregulated e.g. LA-92, recently developed EPA cycles or from other cities e.g. Bangkok can be superimposed.
Technical Paper

Comparison of Ultimate Fuels - Hydrogen and Methane

1987-11-08
871167
The gaseous fuels, hydrogen and methane, are fuels that will likely be in adequate supply when crude oil sourced liquid fuels are scarce. These gases may he used directly in engines, which may need modification or could be used as feed stocks for liquid fuel synthesis. The energy efficiency of using methane and hydrogen in dedicated engines is compared with liquid fuelled engines. Hydrogen gives 6 3% improved efficiency and Methane 39% in city driving and Methane gives slightly improved power but Hydrogen fuel causes a 25% power loss compared with petrol. The storage of Methane in compressed or liquid form and Hydrogen in metal hydrides are compared. The overall efficiency of these gaseous fuel systems are compared, and fuel synthesis is included.
Technical Paper

The Direct Transition of Fuel Sprays to theDense-Fluid Mixing Regime in the Contextof Modern Compression Ignition Engines

2018-04-03
2018-01-0298
Fuel supercriticality has recently received significant attention due to the elevated pressures and temperatures that directly-injected (DI) fuel sprays encounter in modern internal combustion (IC) engines. This paper presents a theoretical examination of conventional and alternative DI fuels at conditions relevant to the operation of compression ignition (CI) engines. The focus is to identify the conditions under which the injected liquid fuel can bypass the atomization process and directly transition to a diffusional mixing regime with the chamber gas. Evaluating the microscopic length-scales of the phase boundary associated with the injection of liquid nitrogen into its own vapor, it is found that the conventional threshold based on the interfacial Knudsen number (i.e. Kn = 0.1) does not adequately quantify the direct transition between sub- and supercriticality. Instead, a threshold that is an order of magnitude smaller is more appropriate for this purpose.
Technical Paper

An Optical and Numerical Characterization of Directly Injected Compressed Natural Gas Jet Development at Engine-Relevant Conditions

2019-04-02
2019-01-0294
Compressed natural gas (CNG) is an attractive, alternative fuel for spark-ignited (SI), internal combustion (IC) engines due to its high octane rating, and low energy-specific CO2 emissions compared with gasoline. Directly-injected (DI) CNG in SI engines has the potential to dramatically decrease vehicles’ carbon emissions; however, optimization of DI CNG fueling systems requires a thorough understanding of the behavior of CNG jets in an engine environment. This paper therefore presents an experimental and modeling study of DI gaseous jets, using methane as a surrogate for CNG. Experiments are conducted in a non-reacting, constant volume chamber (CVC) using prototype injector hardware at conditions relevant to modern DI engines. The schlieren imaging technique is employed to investigate how the extent of methane jets is impacted by changing thermodynamic conditions in the fuel rail and chamber.
Technical Paper

Modeling of Trace Knock in a Modern SI Engine Fuelled by Ethanol/Gasoline Blends

2015-04-14
2015-01-1242
This paper presents a numerical study of trace knocking combustion of ethanol/gasoline blends in a modern, single cylinder SI engine. Results are compared to experimental data from a prior, published work [1]. The engine is modeled using GT-Power and a two-zone combustion model containing detailed kinetic models. The two zone model uses a gasoline surrogate model [2] combined with a sub-model for nitric oxide (NO) [3] to simulate end-gas autoignition. Upstream, pre-vaporized fuel injection (UFI) and direct injection (DI) are modeled and compared to characterize ethanol's low autoignition reactivity and high charge cooling effects. Three ethanol/gasoline blends are studied: E0, E20, and E50. The modeled and experimental results demonstrate some systematic differences in the spark timing for trace knock across all three fuels, but the relative trends with engine load and ethanol content are consistent. Possible reasons causing the differences are discussed.
X