Refine Your Search

Topic

Search Results

Journal Article

Bio-Ketones: Autoignition Characteristics and Their Potential as Fuels for HCCI Engines

2013-10-14
2013-01-2627
This paper studies autoignition characteristics and HCCI engine combustion of ketone fuels, which are important constituents of recently discovered fungi-derived biofuels. Two ketone compounds, 2,4-dimethyl-3-pentanone (DMPN) and cyclopentanone (CPN), are systematically investigated in the Sandia HCCI engine, and the results are compared with conventional gasoline and neat ethanol. It is found that CPN has the lowest autoignition reactivity of all the biofuels and gasoline blends tested in this HCCI engine. The combustion timing of CPN is also the most sensitive to intake-temperature (Tin) variations, and it is almost insensitive to intake-pressure (Pin) variations. These characteristics and the overall HCCI performance of CPN are similar to those of ethanol. In contrast, DMPN shows multi-faceted autoignition characteristics. On the one hand, DMPN has strong temperature-sensitivity, even at boosted Pin, which is similar to the low-reactivity ethanol and CPN.
Technical Paper

The Feasibility of Downsizing a 1.25 Liter Normally Aspirated Engine to a 0.43 Liter Highly Turbocharged Engine

2007-09-16
2007-24-0083
In this paper, performance, efficiency and emission experimental results are presented from a prototype 434 cm3, highly turbocharged (TC), two cylinder engine with brake power limited to approximately 60 kW. These results are compared to current small engines found in today's automobile marketplace. A normally aspirated (NA) 1.25 liter, four cylinder, modern production engine with similar brake power output is used for comparison. Results illustrate the potential for downsized engines to significantly reduce fuel consumption while still maintaining engine performance. This has advantages in reducing vehicle running costs together with meeting tighter carbon dioxide (CO2) emission standards. Experimental results highlight the performance potential of smaller engines with intake boosting. This is demonstrated with the test engine achieving 25 bar brake mean effective pressure (BMEP).
Technical Paper

Compression Ratio Effects on Performance, Efficiency, Emissions and Combustion in a Carbureted and PFI Small Engine

2007-08-05
2007-01-3623
This paper compares the performance, efficiency, emissions and combustion parameters of a prototype two cylinder 430 cm3 engine which has been tested in a variety of normally aspirated (NA) modes with compression ratio (CR) variations. Experiments were completed using 98-RON pump gasoline with modes defined by alterations to the induction system, which included carburetion and port fuel injection (PFI). The results from this paper provide some insight into the CR effects for small NA spark ignition (SI) engines. This information provides future direction for the development of smaller engines as engine downsizing grows in popularity due to rising oil prices and recent carbon dioxide (CO2) emission regulations. Results are displayed in the engine speed, manifold absolute pressure (MAP) and CR domains, with engine speeds exceeding 10000 rev/min and CRs ranging from 9 to 13. Combustion analysis is also included, allowing mass fraction burn (MFB) comparison.
Technical Paper

Optimized Design of a Cyclic Variability Constrained Lean Limit SI Engine at Optimum NOx and Efficiency Using a PSO Algorithm

2007-08-05
2007-01-3551
In recent times new tools have emerged to aid the optimization of engine design. The particle swarm optimizer, used here is one of these tools. However, applying it to the optimization of the S.I. engine for high efficiency and low NOx emission has shown the preference of ultra lean burn strategy combined with high compression ratios. For combined power, efficiency and emissions benefits, there are two restricting factors, limiting the applicability of this strategy, knocking and cyclic variability. In the ultra lean region, knocking is not an important issue but the variability is a major concern. This paper demonstrates the application of a variability model to limit the search domain for the optimization program. The results show that variability constrains the possible gains in fuel consumption and emission reduction, through optimizing cam phasing, mixture and spark timing. The fuel consumption gain is reduced by about 11% relative.
Journal Article

Development of a Direct Injection High Efficiency Liquid Phase LPG Spark Ignition Engine

2009-06-15
2009-01-1881
Direct Injection (DI) is believed to be one of the key strategies for maximizing the thermal efficiency of Spark Ignition (SI) engines and meet the ever-tightening emissions regulations. This paper explores the use of Liquefied Petroleum Gas (LPG) liquid phase fuel in a 1.5 liter SI four cylinder gasoline engine with double over head camshafts, four valves per cylinder, and centrally located DI injector. The DI injector is a high pressure, fast actuating injector enabling precise multiple injections of the finely atomized fuel sprays. With DI technology, the injection timing can be set to avoid fuel bypassing the engine during valve overlap into the exhaust system prior to combustion. The fuel vaporization associated with DI reduces combustion chamber and charge temperatures, thereby reducing the tendency for knocking. Fuel atomization quality supports an efficient combustion process.
Technical Paper

Comparing the Performance and Limitations of a Downsized Formula SAE Engine in Normally Aspirated, Supercharged and Turbocharged Modes

2006-11-13
2006-32-0072
This paper compares the performance of a small two cylinder, 430 cm3 engine which has been tested in a variety of normally aspirated (NA) and forced induction modes on 98-RON pump gasoline. These modes are defined by variations in the induction system and associated compression ratio (CR) alterations needed to avoid knock and maximize volumetric efficiency (ηVOL). These modes included: (A) NA with carburetion (B) NA with port fuel injection (PFI) (C) Mildly Supercharged (SC) with PFI (D) Highly Turbocharged (TC) with PFI The results have significant relevance in defining the limitations for small downsized spark ignition (SI) engines, with power increases needed via intake boosting to compensate for the reduced swept volume. Performance is compared in the varying modes with comparisons of brake mean effective pressure (BMEP), brake power, ηVOL, brake specific fuel consumption (BSFC) and brake thermal efficiency (ηTH).
Technical Paper

Comparison of Pfi and Di Superbike Engines

2008-12-02
2008-01-2943
Gasoline Direct Injection (DI) is a technique that was successful in motor sports several decades ago and is now relatively popular in passenger car applications only. DI gasoline fuel injectors have been recently improved considerably, with much higher fuel flow rates and much finer atomization enabled by the advances in fuel pressure and needle actuation. These improved injector performance and the general interest in reducing fuel consumption also in motor sports have made this option interesting again. This paper compares Port Fuel Injection (PFI) and DI of gasoline fuel in a high performance, four cylinder spark ignition engine for super bike racing. Computations are performed with a code for gas exchange, heat transfer and combustion, simulating turbulent combustion and knock.
Technical Paper

Experimental and Numerical Study of an Air Assisted Fuel Injector for a D.I.S.I. Engine

2007-04-16
2007-01-1415
The transient behaviour of the fuel spray from an air assisted fuel injector has been investigated both numerically and experimentally in a Constant Volume Chamber (CVC) and an optical engine. This two phase injector is difficult to analyse numerically and experimentally because of the strong coupling between the gas and liquid phases. The gas driven atomization of liquid fuel involves liquid film formation, separation and break up and also liquid droplet coalescence, break up, splashing, bouncing, evaporation and collision. Furthermore, the liquid phase is the dominant phase in many regions within the injector. Experimental results are obtained by using Mie scattering, Laser Induced Fluorescence (LIF) and Laser Sheet Drop sizing (LSD) techniques. Computational results are obtained by using a mixed Lagrangian/Eulerian approach in a commercial Computational Fluid Dynamic (CFD) code.
Technical Paper

Exploring the Charge Composition of SI Engine Lean Limits

2009-04-20
2009-01-0929
In this paper the experimental performance of the lean limits is examined for two different types of engines the first a dedicated LPG high compression ratio 2-valve per cylinder engine (Ford of Australia MY 2001 AU Falcon) and the second a gasoline moderate compression 4-valve per cylinder variant of the same engine (Ford of Australia MY 2006 BF Falcon). The in-cylinder composition at the lean limit over a range of steady state operating conditions is estimated using a quasi-dimensional model. This makes it possible to take into account the effects of both residual fraction and fresh charge diluents (EGR and excess air) that allow the exploration of a modeled lean limit performance [1, 2]. The results are compared to the predictions from a model for combustion variability applied to the quasi-dimensional model operating in optimization mode.
Technical Paper

Opportunities for making LPG a clean and low greenhouse emission fuel

2005-05-11
2005-01-2217
It is shown that LPG has the potential to be a main stream fuel because of its low particulate emissions and low greenhouse emission potential. The experimental study reported is directed at minimising the cost of LPG optimised engines through the use of gas phase, throttle body injection in an engine with 11.7 compression ratio up from 9.65 of the base gasoline engine. The advantages of throttle body injection, guided by CFD studies, are extension of the lean limit to lambda 1.6, where NOx is low enough to meet Euro4 emission standards without a reducing catalyst, as deduced from bench test results. Comparison is also made between throttle body and both liquid and gas phase multipoint port injection. Differences in the method of mixing significantly affect engine performance. Notable improvements in emissions and thermal efficiencies were achieved when compared with gasoline, eg.
Technical Paper

Optical Characterization of Propane at Representative Spark Ignition, Gasoline Direct Injection Conditions

2016-04-05
2016-01-0842
The focus of internal combustion (IC) engine research is the improvement of fuel economy and the reduction of the tailpipe emissions of CO2 and other regulated pollutants. Promising solutions to this challenge include the use of both direct-injection (DI) and alternative fuels such as liquefied petroleum gas (LPG). This study uses Mie-scattering and schlieren imaging to resolve the liquid and vapor phases of propane and iso-octane, which serve as surrogates for LPG and gasoline respectively. These fuels are imaged in a constant volume chamber at conditions that are relevant to both naturally aspirated and boosted, gasoline direct injection (GDI) engines. It is observed that propane and iso-octane have different spray behaviors across these conditions. Iso-octane is subject to conventional spray breakup and evaporation in nearly all cases, while propane is heavily flash-boiling throughout the GDI operating map.
Technical Paper

Factors Influencing Petrol Consumption as Determined from a Survey of the Australian Passenger Car Fleet

1988-03-01
871160
A survey of the on-road petrol consumption of Australian passenger cars provided data which has been analysed for effects on fuel consumption caused by features such as transmission type, vehicle inertia class, engine size, air conditioning presence and vehicle location. Results show that cars with automatic transmissions consistently have higher petrol consumption than manuals for all inertia classes - 15% higher in city conditions and 11% higher in highway conditions. There is also a penalty for automatic transmissions at most engine sizes, although the penalty is relatively larger for smaller engine capacities. Presence of air conditioning was found to increase petrol consumption by 13.5% on average, but the data did not allow the impact of frequency of use to be determined. Coastal driving conditions resulted in petrol consumption being 9.4% higher than for inland conditions, and cars driven in winter had 4.4% greater fuel consumption than cars driven in summer.
Technical Paper

The Systematic Evaluation of Twelve LP Gas Fuels for Emissions and Fuel Consumption

2000-06-19
2000-01-1867
The effects on bi-fuel car exhaust emissions, fuel consumption and acceleration performance of a range of LPG fuels has been determined. The LPGs tested included those representing natural gas condensate and oil refineries' products to include a spectrum of C3:C4 and paraffiinic:olefinic mixtures. The overall conclusions are that exhaust emissions from the gaseous fuels for the three-way catalyst equipped cars tested were lower than for gasoline. For all the LPGs, CO2 equivalent emissions are reduced by 7% to 10% or more compared with gasoline. The cars' acceleration performance indicates that there was no sacrifice in acceleration times to various speeds, with any gaseous fuel in these OEM developed cars.
Technical Paper

Comparison of Ultimate Fuels - Hydrogen and Methane

1987-11-08
871167
The gaseous fuels, hydrogen and methane, are fuels that will likely be in adequate supply when crude oil sourced liquid fuels are scarce. These gases may he used directly in engines, which may need modification or could be used as feed stocks for liquid fuel synthesis. The energy efficiency of using methane and hydrogen in dedicated engines is compared with liquid fuelled engines. Hydrogen gives 6 3% improved efficiency and Methane 39% in city driving and Methane gives slightly improved power but Hydrogen fuel causes a 25% power loss compared with petrol. The storage of Methane in compressed or liquid form and Hydrogen in metal hydrides are compared. The overall efficiency of these gaseous fuel systems are compared, and fuel synthesis is included.
Technical Paper

Estimates of the Fuel Consumption and Exhaust Emissions of Light Trucks

1987-11-08
871235
A fleet of 17 utility, van and flat tray bodied trucks has been tested for fuel consumption and exhaust emissions over a range of drive cycles and steady state operating conditions. The influence of vehicle load on the results was included. For each vehicle the tractive force applied by the chassis dynamometer, on which testing was performed, was adjusted to match those found on the road using a new procedure. The fuel consumption results show a downward trend with model year (1.7% annum); about 30% higher petrol use compared with diesel; a cold start penalty of 3 L/100 km and over 2:1 variation for vehicles capable of identical transport task. Exhaust emissions from these rigid trucks were between 3 and 6 times greater than those of the passenger car fleet.
Technical Paper

HAJI Operation in a Hydrogen-Only Mode for Emission Control at Cold Start

1995-02-01
950412
The HAJI (Hydrogen Assisted Jet Ignition) system for S.I. engines utilises direct injection of small amounts of hydrogen to enhance the combustion of a variety of automotive fuels. Although not the primary purpose of HAJI, the hardware, once in place, also lends itself to the possibility of hydrogen-only running during a cold start. Cold-start simulations have been performed using a single cylinder engine. Results are presented, comparing hydrogen-only tests with standard HAJI operation and normal spark-ignition operation. HAJI and spark ignition tests were carried out with gasoline as the main-chamber fuel. Emission levels and combustion stability characteristics were recorded as the engine warmed up. The differences between the various fueling/ignition scenarios are presented and the implications for possible automotive applications are discussed in light of current and proposed emissions legislation.
Technical Paper

Optimum Control of an S.I. Engine with a λ=5 Capability

1995-02-01
950689
HAJI (Hydrogen Assisted Jet Ignition) is an advanced combustion initiation system for otherwise standard S.I engines. It utilises the fluid mechanics of a turbulent, chemically active jet, combined with the reliability of spark igniting rich hydrogen mixtures. The result is an extremely robust ignition system, capable of developing power from an engine charged with air-fuel mixtures as lean as λ = 5. Experiments have been performed using a single cylinder engine operating on gasoline in the speed range of 600-1800 r/min. Data are presented in the form of maps which describe fuel efficiency, combustion stability and emissions with respect to load, speed, air-fuel ratio and throttle. The results are incorporated into a model of a known engine and vehicle and this is used to estimate performance over the Federal drive-cycle.
Technical Paper

Effects of a Wide Range of Drive Cycles on the Emissions from Vehicles of Three Levels of Technology

1995-02-01
950221
Exhaust emission tests were performed on a fleet of vehicles comprising a range of engine technology from leaded fuel control methods to closed loop three-way catalyst meeting 1992 U.S. standards but marketed in Australia. Each vehicle was tested to 5 different driving cycles including the FTP cycles and steady speed driving. Research had shown that for hot-start operation the major driving pattern parameters which influence fuel consumption and exhaust emissions are average speed and PKE (the positive acceleration kinetic energy per unit distance). Plots from analysis of micro-trip fuel use and emissions rates from the test cycles may be presented as contours in PKE. It follows that the micro trip emissions from a range of driving cycles including, regulated e.g. FTP city and unregulated e.g. LA-92, recently developed EPA cycles or from other cities e.g. Bangkok can be superimposed.
Technical Paper

A Comparison of Four Methods for Determining the Octane Index and K on a Modern Engine with Upstream, Port or Direct Injection

2017-03-28
2017-01-0666
Combustion in modern spark-ignition (SI) engines is increasingly knock-limited with the wide adoption of downsizing and turbocharging technologies. Fuel autoignition conditions are different in these engines compared to the standard Research Octane Number (RON) and Motor Octane Numbers (MON) tests. The Octane Index, OI = RON - K(RON-MON), has been proposed as a means to characterize the actual fuel anti-knock performance in modern engines. The K-factor, by definition equal to 0 and 1 for the RON and MON tests respectively, is intended to characterize the deviation of modern engine operation from these standard octane tests. Accurate knowledge of K is of central importance to the OI model; however, a single method for determining K has not been well accepted in the literature.
Technical Paper

Modeling of Trace Knock in a Modern SI Engine Fuelled by Ethanol/Gasoline Blends

2015-04-14
2015-01-1242
This paper presents a numerical study of trace knocking combustion of ethanol/gasoline blends in a modern, single cylinder SI engine. Results are compared to experimental data from a prior, published work [1]. The engine is modeled using GT-Power and a two-zone combustion model containing detailed kinetic models. The two zone model uses a gasoline surrogate model [2] combined with a sub-model for nitric oxide (NO) [3] to simulate end-gas autoignition. Upstream, pre-vaporized fuel injection (UFI) and direct injection (DI) are modeled and compared to characterize ethanol's low autoignition reactivity and high charge cooling effects. Three ethanol/gasoline blends are studied: E0, E20, and E50. The modeled and experimental results demonstrate some systematic differences in the spark timing for trace knock across all three fuels, but the relative trends with engine load and ethanol content are consistent. Possible reasons causing the differences are discussed.
X