Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Journal Article

Effects of Non-Associated Flow on Residual Stress Distributions in Crankshaft Sections Modeled as Pressure-Sensitive Materials under Fillet Rolling

2015-04-14
2015-01-0602
In this paper, the evolution equation for the active yield surface during the unloading/reloading process based on the pressure-sensitive Drucker-Prager yield function and a recently developed anisotropic hardening rule with a non-associated flow rule is first presented. A user material subroutine based on the anisotropic hardening rule and the constitutive relation was written and implemented into the commercial finite element program ABAQUS. A two-dimensional plane strain finite element analysis of a crankshaft section under fillet rolling was conducted. After the release of the roller, the magnitude of the compressive residual hoop stress for the material with consideration of pressure sensitivity typically for cast irons is smaller than that without consideration of pressure sensitivity. In addition, the magnitude of the compressive residual hoop stress for the pressure-sensitive material with the non-associated flow rule is smaller than that with the associated flow rule.
Technical Paper

The Influence of the Operating Duty Cycles on the Composition of Exhaust Gas Recirculation Cooler Deposits of Industrial Diesel Engines

2020-04-14
2020-01-1164
Exhaust Gas Recirculation (EGR) coolers are commonly used in on-road and off-road diesel engines to reduce the recirculated gas temperature in order to reduce NOx emissions. One of the common performance behaviors for EGR coolers in use on diesel engines is a reduction of the heat exchanger effectiveness, mainly due to particulate matter (PM) deposition and condensation of hydrocarbons (HC) from the diesel exhaust on the inside walls of the EGR cooler. According to previous studies, typically, the effectiveness decreases rapidly initially, then asymptotically stabilizes over time. Prior work has postulated a deposit removal mechanism to explain this stabilization phenomenon. In the present study, five field aged EGR cooler samples that were used on construction machines for over 10,000 hours were analyzed in order to understand the deposit structure as well as the deposit composition after long duration use.
Technical Paper

Impact of Miller Cycle Strategies on Combustion Characteristics, Emissions and Efficiency in Heavy-Duty Diesel Engines

2020-04-14
2020-01-1127
This study experimentally investigates the impact of Miller cycle strategies on the combustion process, emissions, and thermal efficiency in heavy-duty diesel engines. The experiments were conducted at constant engine speed, load, and engine-out NOx (1160 rev/min, 1.76 MPa net IMEP, 4.5 g/kWh) on a single cylinder research engine equipped with a fully-flexible hydraulic valve train system. Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC) timing strategies were compared to a conventional intake valve profile. While the decrease in effective compression ratio associated with the use of Miller valve profiles was symmetric around bottom dead center, the decrease in volumetric efficiency (VE) was not. EIVC profiles were more effective at reducing VE than LIVC profiles. Despite this difference, EIVC and LIVC profiles with comparable VE decrease resulted in similar changes in combustion and emissions characteristics.
Technical Paper

Characterization and Modeling of Wet Clutch Actuator for High-Fidelity Propulsion System Simulations

2020-04-14
2020-01-1414
Innovations in mobility are built upon a management of complex interactions between sub-systems and components. A need for CAE tools that are capable of system simulations is well recognized, as evidenced by a growing number of commercial packages. However impressive they are, the predictability of such simulations still rests on the representation of the base components. Among them, a wet clutch actuator continues to play a critical role in the next generation propulsion systems. It converts hydraulic pressure to mechanical force to control torque transmitted through a clutch pack. The actuator is typically modeled as a hydraulic piston opposed by a mechanical spring. Because the piston slides over a seal, some models have a framework to account for seal friction. However, there are few contributions to the literature that describe the effects of seals on clutch actuator behaviors.
Technical Paper

Numerical Investigation of Friction Material Contact Mechanics in Automotive Clutches

2020-04-14
2020-01-1417
A wet clutch model is required in automotive propulsion system simulations for enabling robust design and control development. It commonly assumes Coulomb friction for simplicity, even though it does not represent the physics of hydrodynamic torque transfer. In practice, the Coulomb friction coefficient is treated as a tuning parameter in simulations to match vehicle data for targeted conditions. The simulations tend to deviate from actual behaviors for different drive conditions unless the friction coefficient is adjusted repeatedly. Alternatively, a complex hydrodynamic model, coupled with a surface contact model, is utilized to enhance the fidelity of system simulations for broader conditions. The theory of elastic asperity deformation is conventionally employed to model clutch surface contact. However, recent examination of friction material shows that the elastic modulus of surface fibers significantly exceeds the contact load, implying no deformation of fibers.
Journal Article

The Effects of Temperature, Shear Stress, and Deposit Thickness on EGR Cooler Fouling Removal Mechanism - Part 2

2016-04-05
2016-01-0186
Exhaust gas recirculation (EGR) coolers are used on diesel engines to reduce peak in-cylinder flame temperatures, leading to less NOx formation during the combustion process. There is an ongoing concern with soot and hydrocarbon fouling inside the cold surface of the cooler. The fouling layer reduces the heat transfer efficiency and causes pressure drop to increase across the cooler. A number of experimental studies have demonstrated that the fouling layer tends to asymptotically approach a critical height, after which the layer growth ceases. One potential explanation for this behavior is the removal mechanism derived by the shear force applied on the soot and hydrocarbon deposit surface. As the deposit layer thickens, shear force applied on the fouling surface increases due to the flow velocity growth. When a critical shear force is applied, deposit particles start to get removed.
Journal Article

Study on Fatigue Behaviors of Porous T300/924 Carbon Fiber Reinforced Polymer Unidirectional Laminates

2017-03-28
2017-01-0223
Morphological features of voids were characterized for T300/924 12-ply and 16-ply composite laminates at different porosity levels through the implementation of a digital microscopy (DM) image analysis technique. The composite laminates were fabricated through compression molding. Compression pressures of 0.1MPa, 0.3MPa, and 0.5MPa were selected to obtain composite plaques at different porosity levels. Tension-tension fatigue tests at load ratio R=0.1 for composite laminates at different void levels were conducted, and the dynamic stiffness degradation during the tests was monitored. Fatigue mechanisms were then discussed based on scanning electron microscope (SEM) images of the fatigue fracture surfaces. The test results showed that the presence of voids in the matrix has detrimental effects on the fatigue resistance of the material, depending on the applied load level.
Journal Article

An EGR Cooler Fouling Model: Experimental Correlation and Model Uses

2017-03-28
2017-01-0535
Thermal effectiveness of Exhaust Gas Recirculation (EGR) coolers used in diesel engines can progressively decrease and stabilize over time due to inner fouling layer of the cooler tubes. Thermophoretic force has been identified as the major cause of diesel exhaust soot fouling, and models are proposed in the literature but improvements in simulation are needed especially for the long-term trend of soot deposition. To describe the fouling stabilization behavior, a removal mechanism is required to account for stabilization of the soot layer. Observations from previous experiments on surrogate circular tubes suggest there are three primary factors to determine removal mechanisms: surface temperature, thickness, and shear velocity. Based on this hypothesis, we developed a 1D CFD fouling model for predicting the thermal effectiveness reduction of real EGR coolers. The model includes the two competing mechanisms mentioned that results in fouling balance.
Journal Article

Three-Dimensional Three-Component Air Flow Visualization in a Steady-State Engine Flow Bench Using a Plenoptic Camera

2017-03-28
2017-01-0614
Plenoptic particle tracking velocimetry (PTV) shows great potential for three-dimensional, three-component (3D3C) flow measurement with a simple single-camera setup. It is therefore especially promising for applications in systems with limited optical access, such as internal combustion engines. The 3D visualization of a plenoptic imaging system is achieved by inserting a micro-lens array directly anterior to the camera sensor. The depth is calculated from reconstruction of the resulting multi-angle view sub-images. With the present study, we demonstrate the application of a plenoptic system for 3D3C PTV measurement of engine-like air flow in a steady-state engine flow bench. This system consists of a plenoptic camera and a dual-cavity pulsed laser. The accuracy of the plenoptic PTV system was assessed using a dot target moved by a known displacement between two PTV frames.
Journal Article

Assessing a Hybrid Supercharged Engine for Diluted Combustion Using a Dynamic Drive Cycle Simulation

2018-04-03
2018-01-0969
This study uses full drive cycle simulation to compare the fuel consumption of a vehicle with a turbocharged (TC) engine to the same vehicle with an alternative boosting technology, namely, a hybrid supercharger, in which a planetary gear mechanism governs the power split to the supercharger between the crankshaft and a 48 V 5 kW electric motor. Conventional mechanically driven superchargers or electric superchargers have been proposed to improve the dynamic response of boosted engines, but their projected fuel efficiency benefit depends heavily on the engine transient response and driver/cycle aggressiveness. The fuel consumption benefits depend on the closed-loop engine responsiveness, the control tuning, and the torque reserve needed for each technology. To perform drive cycle analyses, a control strategy is designed that minimizes the boost reserve and employs high rates of combustion dilution via exhaust gas recirculation (EGR).
Journal Article

Optimization of an Advanced Combustion Strategy Towards 55% BTE for the Volvo SuperTruck Program

2017-03-28
2017-01-0723
This paper describes a novel design and verification process for analytical methods used in the development of advanced combustion strategies in internal combustion engines (ICE). The objective was to improve brake thermal efficiency (BTE) as part of the US Department of Energy SuperTruck program. The tools and methods herein discussed consider spray formation and injection schedule along with piston bowl design to optimize combustion efficiency, air utilization, heat transfer, emission, and BTE. The methodology uses a suite of tools to optimize engine performance, including 1D engine simulation, high-fidelity CFD, and lab-scale fluid mechanic experiments. First, a wide range of engine operating conditions are analyzed using 1-D engine simulations in GT Power to thoroughly define a baseline for the chosen advanced engine concept; secondly, an optimization and down-select step is completed where further improvements in engine geometries and spray configurations are considered.
Technical Paper

Real-Time Embedded Models for Simulation and Control of Clean and Fuel-Efficient Heavy-Duty Diesel Engines

2020-04-14
2020-01-0257
This paper presents a framework for modeling a modern diesel engine and its aftertreatment system which are intended to be used for real-time implementation as a virtual engine and in a model-based control architecture to predict critical variables such as fuel consumption and tailpipe emissions. The models are specifically able to capture the impact of critical control variables such as the Exhaust Gas Recirculation (EGR) valve position and fuel injection timing, as well as operating conditions of speed and torque, on the engine airpath variables and emissions during transient driving conditions. To enable real-time computation of the models, a minimal realization of the nonlinear airpath model is presented and it is coupled with a cycle averaged NOx emissions predictor to estimate feed gas NOx emissions. Then, the feedgas enthalpy is used to calculate the thermal behavior of the aftertreatment system required for prediction of tailpipe emissions.
Journal Article

Premixed Low Temperature Combustion of Biodiesel and Blends in a High Speed Compression Ignition Engine

2009-04-20
2009-01-0133
The effects of combining premixed, low temperature combustion (LTC) with biodiesel are relatively unknown to this point. This mode allows simultaneously low soot and NOx emissions by using high rates of EGR and increasing ignition delay. This paper compares engine performance and emissions of neat, soy-based methyl ester biodiesel (B100), B20, B50, pure ultra low sulfur diesel (ULSD) and a Swedish, low aromatic diesel in a multi-cylinder diesel engine operating in a late-injection premixed LTC mode. Using heat release analysis, the progression of LTC combustion was explored by comparing fuel mass fraction burned. B100 had a comparatively long ignition delay compared with Swedish diesel when measured by start of ignition (SOI) to 10% fuel mass fraction burned (CA10). Differences were not as apparent when measured by SOI to start of combustion (SOC) even though their cetane numbers are comparable.
Journal Article

Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst

2008-10-06
2008-01-2467
Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting in decreased NOx emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM) and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that a range of HCs from C15 - C25 were deposited and retained in the surrogate tubes.
Journal Article

Hydrogen DI Dual Zone Combustion System

2013-04-08
2013-01-0230
Internal combustion (IC) engines fueled by hydrogen are among the most efficient means of converting chemical energy to mechanical work. The exhaust has near-zero carbon-based emissions, and the engines can be operated in a manner in which pollutants are minimal. In addition, in automotive applications, hydrogen engines have the potential for efficiencies higher than fuel cells.[1] In addition, hydrogen engines are likely to have a small increase in engine costs compared to conventionally fueled engines. However, there are challenges to using hydrogen in IC engines. In particular, efficient combustion of hydrogen in engines produces nitrogen oxides (NOx) that generally cannot be treated with conventional three-way catalysts. This work presents the results of experiments which consider changes in direct injection hydrogen engine design to improve engine performance, consisting primarily of engine efficiency and NOx emissions.
Technical Paper

Characterizing the Effect of Combustion Chamber Deposits on a Gasoline HCCI Engine

2006-10-16
2006-01-3277
Homogenous Charge Compression Ignition (HCCI) engines offer a good potential for achieving high fuel efficiency while virtually eliminating NOx and soot emissions from the exhaust. However, realizing the full fuel economy potential at the vehicle level depends on the size of the HCCI operating range. The usable HCCI range is determined by the knock limit on the upper end and the misfire limit at the lower end. Previously proven high sensitivity of the HCCI process to thermal conditions leads to a hypothesis that combustion chamber deposits (CCD) could directly affect HCCI combustion, and that insight about this effect can be helpful in expanding the low-load limit. A combustion chamber conditioning process was carried out in a single-cylinder gasoline-fueled engine with exhaust re-breathing to study CCD formation rates and their effect on combustion. Burn rates accelerated significantly over the forty hours of running under typical HCCI operating conditions.
Journal Article

Influence of Discretization Schemes and LES Subgrid Models on Flow Field Predictions for a Motored Optical Engine

2018-04-03
2018-01-0185
Large-eddy simulations (LES) of a motoring single-cylinder engine with transparent combustion chamber (TCC-II) are carried out using a commercially available computer code, CONVERGE. Numerical predictions are compared with high-speed particle image velocimetry (PIV) measurements. Predictions of two spatial discretization schemes, namely, numerically stabilized central difference scheme (CDS) and fully upwind scheme are compared. Four different subgrid scale (SGS) models; a non-eddy viscosity dynamic structure turbulence (DST) model of Pomraning and Rutland, one-equation eddy-viscosity (1-Eqn) model of Menon et al., a zeroequation eddy-viscosity model of Vreman, and the zeroequation standard Smagorinsky model are employed on two different grid configurations. Additionally, simulations are also performed by deactivating the LES SGS models. It is found that the predictions when using the numerically stabilized CDS are significantly better than using the fully upwind scheme.
Technical Paper

The Effect of the Location of Knock Initiation on Heat Flux Into an SI Combustion Chamber

1997-10-01
972935
A study has been conducted in order to investigate the effect of the location of knock initiation on heat flux in a Spark-Ignition (SI) combustion chamber. Heat flux measurements were taken on the piston and cylinder head under different knock intensity levels, induced by advancing the spark timing. Tests were performed with two engine configurations, the first with the spark-plug located on the rear side of the chamber and the other having a second non-firing spark-plug placed at the front side of the chamber. The presence of the non-firing spark-plug consistently shifted the location of autoignition initiation from the surface of the piston to its vicinity, without causing a noticeable increase in knock intensity. By localizing the initiation of knock, changes induced in the secondary flame propagation pattern affected both the magnitude and the rate of change of peak heat flux under heavy knock.
Technical Paper

Multi-Dimensional Modeling of Natural Gas Ignition Under Compression Ignition Conditions Using Detailed Chemistry

1998-02-23
980136
A detailed chemical kinetic mechanism, consisting of 22 species and 104 elementary reactions, has been used in conjunction with the multi-dimensional reactive flow code KIVA-3 to study autoignition of natural gas injected under compression ignition conditions. Calculations for three different blends of natural gas are performed on a three-dimensional computational grid by modeling both the injection and ignition processes. Ignition delay predictions at pressures and temperatures typical of top-dead-center conditions in compression ignition engines compare well with the measurements of Naber et al. [1] in a combustion bomb. Two different criteria, based on pressure rise and mass of fuel burned, are used to detect the onset of ignition. Parametric studies are conducted to show the effect of additives like ethane and hydrogen peroxide in increasing the fuel consumption rate.
X