Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Control of a Multi-Cylinder HCCI Engine During Transient Operation by Modulating Residual Gas Fraction to Compensate for Wall Temperature Effects

2007-04-16
2007-01-0204
The thermal conditions of an engine structure, in particular the wall temperatures, have been shown to have a great effect on the HCCI engine combustion timing and burn rates through wall heat transfer, especially during transient operations. This study addresses the effects of thermal inertia on combustion in an HCCI engine. In this study, the control of combustion timing in an HCCI engine is achieved by modulating the residual gas fraction (RGF) while considering the wall temperatures. A multi-cylinder engine simulation with detailed geometry is carried out using a 1-D system model (GT-Power®) that is linked with Simulink®. The model includes a finite element wall temperature solver and is enhanced with original HCCI combustion and heat transfer models. Initially, the required residual gas fraction for optimal BSFC is determined for steady-state operation. The model is then used to derive a map of the sensitivity of optimal residual gas fraction to wall temperature excursions.
Technical Paper

Innovative Composite Structure Design for Blast Protection

2007-04-16
2007-01-0483
An advanced design methodology is developed for innovative composite structure concepts which can be used in the Army's future ground vehicle systems to protect vehicle and occupants against various explosives. The multi-level and multi-scenario blast simulation and design system integrates three major technologies: a newly developed landmine-soil-composite interaction model; an advanced design methodology, called Function-Oriented Material Design (FOMD); and a novel patent-pending composite material concept, called BTR (Biomimetic Tendon-Reinforced) material. Example results include numerical simulation of a BTR composite under a blast event. The developed blast simulation and design system will enable the prediction, design, and prototyping of blast-protective composite structures for a wide range of damage scenarios in various blast events.
Technical Paper

Measurement of Diesel Spray Impingement and Fuel Film Characteristics Using Refractive Index Matching Method

2007-04-16
2007-01-0485
The fuel film thickness resulting from diesel fuel spray impingement was measured in a chamber at conditions representative of early injection timings used for low temperature diesel combustion. The adhered fuel volume and the radial distribution of the film thickness are presented. Fuel was injected normal to the impingement surface at ambient temperatures of 353 K, 426 K and 500 K, with densities of 10 kg/m3 and 25 kg/m3. Two injectors, with nozzle diameters of 100 μm and 120 μm, were investigated. The results show that the fuel film volume was strongly affected by the ambient temperature, but was minimally affected by the ambient density. The peak fuel film thickness and the film radius were found to increase with decreased temperature. The fuel film was found to be circular in shape, with an inner region of nearly constant thickness. The major difference observed with temperature was a decrease in the radial extent of the film.
Technical Paper

Minimizing Read-Through When Creating a Mechanical Score in a Polymer Skin

2007-04-16
2007-01-1220
When weakening a skin/foam bilaminate by mechanically scoring the polymer skin on its back surface, where it is bonded to the foam, the weakness of the bilaminate is determined by the depth of the score groove. The deeper the groove, the weaker the bilaminate. But also, the deeper the groove, the greater the tendency for read-through. Read-through is seeing on the front surface the location of this groove that was created on the back surface. Scored skins, after mounting flat on a glass plate, were viewed with an optical interferometer. It was found that the topographical feature that constituted read-through was a valley. A Silly Putty model was used to better understand the strains induced by mechanical scoring and this understanding was used to identify factors affecting read-through. Blade thickness and the ultimate elongation of the skin material were identified as factors. This work is applicable to certain types of passenger-side seamless airbag systems, for example.
Technical Paper

Thermal and Chemical Aging of Diesel Particulate Filters

2007-04-16
2007-01-1266
The effects of thermal and chemical aging on the performance of cordierite-based and high-porosity mullite-based diesel particulate filters (DPFs), were quantified, particularly their filtration efficiency, pressure drop, and regeneration capability. Both catalyzed and uncatalyzed core-size samples were tested in the lab using a diesel fuel burner and a chemical reactor. The diesel fuel burner generated carbonaceous particulate matter with a pre-specified particle-size distribution, which was loaded in the DPF cores. As the particulate loading evolved, measurements were made for the filtration efficiency and pressure drop across the filter using, respectively, a Scanning Mobility Particle Sizer (SMPS) and a pressure transducer. In a subsequent process and on a different bench system, the regeneration capability was tested by measuring the concentration of CO plus CO2 evolved during the controlled oxidation of the carbonaceous species previously deposited on the DPF samples.
Technical Paper

Effects of Surface Treatment (Lubricant) on Spot Friction Welded Joints Made of 6111-T4 Aluminum Sheets

2007-04-16
2007-01-1706
The effects of lubricant on lap shear strength of Spot Friction Welded (SFW) joints made of 6111-T4 alloys were studied. Taguchi L8 design of experiment methodology was used to determine the lubricant effects. The results showed that the lap shear strength increased by 9.9% when the lubricant was present at the top surface compared to that of the baseline (no lubricant) whereas the lap shear strength reduced by 10.2% and 10.9% when the lubricant was present in the middle and at the bottom surfaces compared to that of the baseline (no lubricant), respectively. The microstructure analysis showed a zigzag interface at the joint between the upper and the lower sheet metal for the baseline specimen, the specimens with the lubricant at the top and at the bottom. However, a straight line interface is exhibited at the joint between the upper and the lower sheet for the specimen with the lubricant in the middle. The weld nugget sizes of the lap shear tested specimens were measured.
Technical Paper

One-factor-at-a-time Screening Designs for Computer Experiments

2007-04-16
2007-01-1660
This short note presents some initial results on the study of one-factor-at-a-time (OFAT) screening designs for computer experiments. Both main effects and two-factor interactions are under our consideration. After the development of swapping and union techniques in general, we study the standard OFAT plan by Daniel (1973) and Qu and Wu (2005). A fast OFAT plan is proposed with a stopping rule via capping technique, which is similar to the variable search procedure by Shainin (1988) under sign restriction.
Technical Paper

Model Update and Statistical Correlation Metrics for Automotive Crash Simulations

2007-04-16
2007-01-1744
In order to develop confidence in numerical models which are used for automotive crash simulations, results are compared with test data. Modeling assumptions are made when constructing a simulation model for a complex system, such as a vehicle. Through a thorough understanding of the modeling assumptions an appropriate set of variables can be selected and adjusted in order to improve correlation with test data. Such a process can lead to better modeling practices when constructing a simulation model. Comparisons between the time history of acceleration responses from test and simulations are the most challenging. Computing accelerations correctly is more difficult compared to computing displacements, velocities, or intrusion levels due to the second order differentiation with time. In this paper a methodology for enabling the update of a simulation model for improved correlation is presented.
Technical Paper

Flexible Low Cost Lane Departure Warning System

2007-04-16
2007-01-1736
Many highway accidents are caused by distracted drivers and those suffering from drowsy driver syndrome. A driver alert indicating a lane departure could thwart such accidents, saving lives and making our roads safer. Products called Lane Departure Warning Systems (LDWS) have been developed to alert drivers of a lane departure. However, due to their high cost, lane departure warning systems are available only on luxury vehicles, barring their benefits from the majority of drivers. With Field Programmable Gate Arrays (FPGA) becoming more powerful and more affordable, a LDWS implementation utilizing hardware rather than software to conduct image processing eliminates the need for a costly high-power microprocessor, and could bring LDWS to a broader user base. This paper will discuss an FPGA based approach to LDWS. The proof-of-concept system is based on a Xilinx FPGA, taking its image data from an off-the-shelf NTSC camera.
Technical Paper

Combining an Energy Boundary Element with an Energy Finite Element Analysis for Airborne Noise Simulations

2007-05-15
2007-01-2178
The Energy Boundary Element Analysis (EBEA) has been utilized in the past for computing the exterior acoustic field at high frequencies (above ∼400Hz) around vehicle structures and numerical results have been compared successfully to test data [1, 2 and 3]. The Energy Finite Element Analysis (EFEA) has been developed for computing the structural vibration of complex structures at high frequencies and validations have been presented in previous publications [4, 5]. In this paper the EBEA is utilized for computing the acoustic field around a vehicle structure due to external acoustic noise sources. The computed exterior acoustic field comprises the excitation for the EFEA analysis. Appropriate loading functions have been developed for representing the exterior acoustic loading in the EFEA simulations, and a formulation has been developed for considering the acoustic treatment applied on the interior side of structural panels.
Technical Paper

Validation of an EFEA Formulation for Computing the Vibrational Response of Complex Structures

2007-05-15
2007-01-2324
This paper presents a validation case study for an Energy Finite Element Analysis (EFEA) formulation through comparison to test data. The EFEA comprises a simulation tool for computing the structural response of a complex structure and the amount of the radiated power. The EFEA formulation presented in this paper can account for periodic stiffeners, for partial fluid loading effects on the outer part of the structure, and for internal compartments filled with heavy fluid. In order to validate these modeling capabilities of the EFEA two 1/8th scale structures representing an advanced double hull design and a conventional hull design of a surface ship are analyzed. Results for the structural vibration induced on the outer bottom part of the structure are compared to available test data. The excitation is applied at two different locations of the deck structure. Good correlation is observed between the numerical results and the test data.
Technical Paper

A Substructuring Formulation for the Energy Finite Element Analysis

2007-05-15
2007-01-2325
In applications of the Energy Finite Element Analysis (EFEA) there is an increasing need for developing comprehensive models with a large number of elements which include both structural and interior fluid elements, while certain parts of the structure are considered to be exposed to an external fluid loading. In order to accommodate efficient computations when using simulation models with a large number of elements, joints, and domains, a substructuring computational capability has been developed. The new algorithm is based on dividing the EFEA model into substructures with internal and interface degrees of freedom. The system of equations for each substructure is assembled and solved separately and the information is condensed to the interface degrees of freedom. The condensed systems of equations from each substructure are assembled in a reduced global system of equations. Once the global system of equations has been solved the solution for each substructure is pursued.
Technical Paper

Estimation of Body Links Transfer Functions in Vehicle Vibration Environment

2007-06-12
2007-01-2484
Exposure of a driver to vehicle vibration is known to disrupt manual performances, and more specifically affect the speed and accuracy of reaching tasks associated with vehicle operation. The effects of whole body vibration (WBV) can be analyzed as a function of the vibration characteristics of each body link. This information can then be used to identify movement strategies and predict biodynamic responses. Conceptual principles derived from the understanding of human behavior in a vibratory environment can then be used for the design of controls or interfaces adapted for vehicle operation in this context. The transfer functions of individual upper body links were estimated to investigate their biodynamic properties as a function of vehicle vibration frequency and spatial location of targets to be reached. In the present study, fourteen seated participants performed pointing movements to eight targets distributed in the right hemisphere.
Technical Paper

An Integrated Model of Gait and Transition Stepping for Simulation of Industrial Workcell Tasks

2007-06-12
2007-01-2478
Industrial tasks performed by standing workers are among those most commonly simulated using digital human models. Workers often walk, turn, and take acyclic steps as they perform these tasks. Current h uman modeling tools lack the capability to simulate these whole body motions accurately. Most models simulate walking by replaying joint angle trajectories corresponding to a general gait pattern. Turning is simulated poorly if at all, and violations of kinematic constraints between the feet and ground are common. Moreover, current models do not accurately predict foot placement with respect to loads and other hand targets, diminishing the utility of the associated ergonomic analyses. A new approach to simulating stepping and walking in task-oriented activities is proposed. Foot placements and motions are predicted from operator and task characteristics using empirical models derived from laboratory data and validated using field data from an auto assembly plant.
Technical Paper

A Framework to Study Human Response to Whole Body Vibration

2007-06-12
2007-01-2474
A framework to study the response of seated operators to whole-body vibration (WBV) is presented in this work. The framework consists of (i) a six-degree-of-freedom man-rated motion platform to play back ride files of typical heavy off-road machines; (ii) an optical motion capture system to collect 3D motion data of the operators and the surrounding environment (seat and platform); (iii) a computer skeletal model to embody the tested subjects in terms of their body dimensions, joint centers, and inertia properties; (iv) a marker placement protocol for seated positions that facilitates the process of collecting data of the lower thoracic and the lumbar regions of the spine regardless of the existence of the seatback; and (v) a computer human model to solve the inverse kinematics/dynamic problem for the joint profiles and joint torques. The proposed framework uses experimental data to answer critical questions regarding human response to WBV.
Technical Paper

Development and Validation of a Computational Process for Pass-By Noise Simulation

2001-04-30
2001-01-1561
The Indirect Boundary Element Analysis is employed for developing a computational pass-by noise simulation capability. An inverse analysis algorithm is developed in order to generate the definition of the main noise sources in the numerical model. The individual source models are combined for developing a system model for pass-by noise simulation. The developed numerical techniques are validated through comparison between numerical results and test data for component level and system level analyses. Specifically, the source definition capability is validated by comparing the actual and the computationally reconstructed acoustic field for an engine intake manifold. The overall pass-by noise simulation capability is validated by computing the maximum overall sound pressure level for a vehicle under two separate driving conditions.
Technical Paper

Validation of the EFEA Method through Correlation with Conventional FEA and SEA Results

2001-04-30
2001-01-1618
The Energy Finite Element Analysis(EFEA) is a recent development for high frequency vibro-acoustic analysis, and constitutes an evolution in the area of high frequency computations. The EFEA is a wave based approach, while the SEA is a modal based approach. In this paper the similarities in the theoretical development of the two methods are outlined. The main scope of this paper is to establish the validity of the EFEA by analyzing several complex structural-acoustic systems. The EFEA solutions are compared successfully to SEA results and to solutions obtained from extremely dense conventional FEA models.
Technical Paper

Modeling Variability in Reaching Motions

2001-06-26
2001-01-2094
Motion prediction models may give the average reach for an individual of specified characteristics. The actual reach will vary from this reach in a manner that may depend on both systematic and random factors. We describe a modeling approach that incorporates the variability within the reaches of a given subject and that between subjects. This information is useful to designers in investigating phenomena that may not occur during the average reach but may occur during variants such as collision with an obstacle or injury due to over-exertion.
Technical Paper

Experimental and Simulated Results Detailing the Sensitivity of Natural Gas HCCI Engines to Fuel Composition

2001-09-24
2001-01-3609
Natural gas quality, in terms of the volume fraction of higher hydrocarbons, strongly affects the auto-ignition characteristics of the air-fuel mixture, the engine performance and its controllability. The influence of natural gas composition on engine operation has been investigated both experimentally and through chemical kinetic based cycle simulation. A range of two component gas mixtures has been tested with methane as the base fuel. The equivalence ratio (0.3), the compression ratio (19.8), and the engine speed (1000 rpm) were held constant in order to isolate the impact of fuel autoignition chemistry. For each fuel mixture, the start of combustion was phased near top dead center (TDC) and then the inlet mixture temperature was reduced. These experimental results have been utilized as a source of data for the validation of a chemical kinetic based full-cycle simulation.
Technical Paper

A Decoupled Model of Detailed Fluid Mechanics Followed by Detailed Chemical Kinetics for Prediction of Iso-Octane HCCI Combustion

2001-09-24
2001-01-3612
We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. The methodology judiciously uses a fluid mechanics code followed by a chemical kinetics code to achieve great reduction in the computational requirements; to a level that can be handled with current computers. In previous papers, our sequential, multi-zone methodology has been applied to HCCI combustion of short-chain hydrocarbons (natural gas and propane). Applying the same procedure to long-chain hydrocarbons (iso-octane) results in unacceptably long computational time. In this paper, we show how the computational time can be made acceptable by developing a segregated solver. This reduces the run time of a ten-zone problem by an order of magnitude and thus makes it much more practical to make combustion studies of long-chain hydrocarbons.
X