Refine Your Search

Topic

Author

Search Results

Technical Paper

Knock Indexes Thresholds Setting Methodology

2007-04-16
2007-01-1508
Gasoline engines can be affected, under certain operating conditions, by knocking combustions: this is still a factor limiting engines performance, and an accurate control is required for those engines working near the knock limit, in order to avoid permanent damage. HCCI engines also need a sophisticated combustion monitoring methodology, especially for high BMEP operating conditions. Many methodologies can be found in the literature to recognize potentially dangerous combustions, based on the analysis of the in-cylinder pressure signal. The signal is usually filtered and processed, in order to obtain an index that is then be compared to the knock threshold level. Thresholds setting is a challenging task, since usually indexes are not intrinsically related to the damages caused by abnormal combustions events. Furthermore, their values strongly depend on the engine operating conditions (speed and load), and thresholds must therefore vary with respect to speed and load.
Technical Paper

A Numerical Methodology for the Multi-Objective Optimization of an Automotive DI Diesel Engine

2013-09-08
2013-24-0019
Nowadays, an automotive DI Diesel engine is demanded to provide an adequate power output together with limit-complying NOx and soot emissions so that the development of a specific combustion concept is the result of a trade-off between conflicting objectives. In other words, the development of a low-emission DI diesel combustion concept could be mathematically represented as a multi-objective optimization problem. In recent years, genetic algorithm and CFD simulations were successfully applied to this kind of problem. However, combining GA optimization with actual CFD-3D combustion simulations can be too onerous since a large number of simulations is usually required, resulting in a high computational cost and, thus, limiting the suitability of this method for industrial processes.
Technical Paper

Thermal Management Strategies for SCR After Treatment Systems

2013-09-08
2013-24-0153
While the Diesel Particulate Filter (DPF) is actually a quasi-standard equipment in the European Diesel passenger cars market, an interesting solution to fulfill NOx emission limits for the next EU 6 legislation is the application of a Selective Catalytic Reduction (SCR) system on the exhaust line, to drastically reduce NOx emissions. In this context, one of the main issues is the performance of the SCR system during cold start and warm up phases of the engine. The exhaust temperature is too low to allow thermal activation of the reactor and, consequently, to promote high conversion efficiency and significant NOx concentration reduction. This is increasingly evident the smaller the engine displacement, because of its lower exhaust system temperature (reduced gross power while producing the same net power, i.e., higher efficiency).
Technical Paper

Vehicle Dynamics Modeling for Real-Time Simulation

2013-09-08
2013-24-0144
This paper presents a 14 degrees of freedom vehicle model. Despite numerous software are nowadays commercially available, the model presented in this paper has been built starting from a blank sheet because the goal of the authors was to realize a model suitable for real-time simulation, compatible with the computational power of typical electronic control units, for on-board applications. In order to achieve this objective a complete vehicle dynamics simulation model has been developed in Matlab/Simulink environment: having a complete knowledge of the model's structure, it is possible to adapt its complexity to the computational power of the hardware used to run the simulation, a crucial feature to achieve real-time execution in actual ECUs.
Technical Paper

UEGO-based Exhaust Gas Mass Flow Rate Measurement

2012-09-10
2012-01-1627
New and upcoming exhaust emissions regulations and fuel consumption reduction requirements are forcing the development of innovative and particularly complex intake-engine-exhaust layouts. Especially in the case of Compression Ignition (CI) engines, the HC-CO-NOx-PM after-treatment system is becoming extremely expensive and sophisticated, and the necessity to further reduce engine-out emission levels, without significantly penalizing fuel consumption figures, may lead to the adoption of intricate and challenging intake-exhaust systems configurations. The adoption of both long- and short-route Exhaust Gas Recirculation (EGR) systems is one example of such situation, and the need to precisely measure (or estimate) mass flow rates in the various elements of the gas exchange circuit is one of the consequences.
Technical Paper

Ethanol to Gasoline Ratio Detection via Time-Frequency Analysis of Engine Acoustic Emission

2012-09-10
2012-01-1629
In order to reduce both polluting emissions and fuel costs, many countries allow mixing ethanol to gasoline either in fixed percentages or in variable percentages. The resulting fuel is labeled E10 or E22, where the number specifies the ethanol percentage. This operation significantly changes way the stoichiometric value, which is the air-to-fuel mass ratio theoretically needed to completely burn the mixture. Ethanol concentration must be correctly estimated by the Engine Management System to optimally control exhaust emissions, fuel economy and engine performance. In fact, correct fuel quality recognition allows estimating the actual stoichiometric value, thus allowing the catalyst system to operate at maximum efficiency in any engine working point. Moreover, also other essential engine control functions should be adapted in real time by taking into account the quality of the fuel that is being used.
Technical Paper

Virtual GDI Engine as a Tool for Model-Based Calibration

2012-09-10
2012-01-1679
Recent and forthcoming fuel consumption reduction requirements and exhaust emissions regulations are forcing the development of innovative and particularly complex intake-engine-exhaust layouts. In the case of Spark Ignition (SI) engines, the necessity to further reduce fuel consumption has led to the adoption of direct injection systems, displacement downsizing, and challenging intake-exhaust configurations, such as multi-stage turbocharging or turbo-assist solutions. Further, the most recent turbo-GDI engines may be equipped with other fuel-reduction oriented technologies, such as Variable Valve Timing (VVT) systems, devices for actively control tumble/swirl in-cylinder flow components, and Exhaust Gas Recirculation (EGR) systems. Such degree of flexibility has a main drawback: the exponentially increasing effort required for optimal engine control calibration.
Technical Paper

Benchmark Comparison of Commercially Available Systems for Particle Number Measurement

2013-09-08
2013-24-0182
Measurement of particle number was introduced in the Euro 5/6 light duty vehicle emissions regulation. Due to the complex nature of combustion exhaust particles, and to transportation, transformation and deposition mechanisms, such type of measurement is particularly complex, and regression analysis is commonly used for the comparison of different measurement systems. This paper compares various commercial instruments, developing a correlation analysis focused on PN (Particle Number) measurement, and isolating the factors that mainly influence each measuring method. In particular, the experimental activity has been conducted to allow critical comparisons between measurement techniques that are imposed by current regulations and instruments that can be used also on the test cell. The paper presents the main results obtained by analyzing instruments based on different physical principles, and the effects of different sampling locations and different operating parameters.
Journal Article

Benchmarking Hybrid Concepts: On-Line vs. Off-Line Fuel Economy Optimization for Different Hybrid Architectures

2013-09-08
2013-24-0084
The recent advance in the development of various hybrid vehicle technologies comes along with the need of establishing optimal energy management strategies, in order to minimize both fuel economy and pollutant emissions, while taking into account an increasing number of state and control variables, depending on the adopted hybrid architecture. One of the objectives of this research was to establish benchmarking performance, in terms of fuel economy, for real time on-board management strategies, such as ECMS (Equivalent Consumption Minimization Strategy), whose structure has been implemented in a SIMULINK model for different hybrid vehicle concepts.
Technical Paper

Multicycle Simulation of the Mixture Formation Process of a PFI Gasoline Engine

2012-06-01
2011-01-2463
The mixture composition heavily influences the combustion process of Port Fuel Injection (PFI) engines. The local mixture air-index at the spark plug is closely related to combustion instabilities and the cycle-by-cycle Indicated Mean Effective Pressure (IMEP) Coefficient of Variation (CoV) well correlates with the variability of the flame kernel development. The needs of reducing the engine emissions and consumption push the engine manufactures to implement techniques providing a better control of the mixture quality in terms of homogeneity and variability. Simulating the mixture formation of a PFI engine by means of CFD techniques is a critical issue, since involved phenomena are highly heterogeneous and a two phase flow must be considered. The aim of the paper is to present a multi-cycle methodology for the simulation of the injection and the mixture formation processes of high performance PFI engine, based on the validation of all the main physical sub-models involved.
Technical Paper

Conceptual Design and Analytic Assessment of 48V Electric Hybrid Powertrain Architectures for Passenger Cars

2019-04-02
2019-01-0353
To meet the requirements in relation to pollutants, CO2-emissions, performances, comfort and costs for 2025 timeframe, many technology options for the powertrain, that plays a key role in the vehicle, are possible. Beside the central aspect of reducing standard cycle consumption levels and emissions, consumer demands are also growing with respect to comfort and functionality. In addition, there is also the challenge of finding cost efficient ways of integrating technologies into a broad range of vehicles with different levels of hybridization. High degrees of electrification simultaneously provide opportunities to reduce the technology content of the internal combustion engines (ICE), resulting in a cost balancing compromise between combustion engine and hybrid technology. The design and optimization of powertrain topologies, functionalities, and components require a complex development process.
Technical Paper

Water Injection Applicability to Gasoline Engines: Thermodynamic Analysis

2019-04-02
2019-01-0266
The vehicle WLTP and RDE homologation test cycles are pushing the engine technology toward the implementation of different solutions aimed to the exhaust gases emission reduction. The tightening of the policy on the Auxiliary Emission Strategy (A.E.S.), including those for the engine component protection, faces the Spark Ignited (S.I.) engines with the need to replace the fuel enrichment as a means to cool down both unburnt mixture and exhaust gases to accomplish with the inlet temperature turbine (TiT) limit. Among the whole technology solutions conceived to make SI engine operating at lambda 1.0 on the whole operation map, the water injection is one of the valuable candidates. Despite the fact that the water injection has been exploited in the past, the renewed interest in it requires a deep investigation in order to outcome its potential as well as its limits.
Technical Paper

Review of Combustion Indexes Remote Sensing Applied to Different Combustion Types

2019-04-02
2019-01-1132
This paper summarizes the main studies carried out by the authors for the development of indexes for remote combustion sensing applicable to different combustion types, i.e. conventional gasoline and diesel combustions, diesel PCCI and dual fuel gasoline-diesel RCCI. It is well-known that the continuous development of modern Internal Combustion Engine (ICE) management systems is mainly aimed at complying with upcoming increasingly stringent regulations throughout the world, both for pollutants and CO2 emissions. Performing an efficient combustion control is crucial for efficiency increase and pollutant emissions reduction. Over the past years, the authors of this paper have developed several techniques to estimate the most important combustion indexes for combustion control, without using additional cylinder pressure sensors but only using the engine speed sensor (always available on board) and accelerometers (usually available on-board for gasoline engines).
Technical Paper

Development and Software in the Loop Validation of a Model-based Water Injection Combustion Controller for a GDI TC Engine

2019-04-02
2019-01-1174
Turbocharged (TC) engines work at high Indicated Mean Effective Pressure (IMEP), resulting in high in-cylinder pressures and temperatures, improving thermal efficiency, but at the same time increasing the possibility of abnormal combustion events like knock and pre-ignition. To mitigate knocking conditions, engine control systems typically apply spark retard and/or mixture enrichment, which decrease indicated work and increase specific fuel consumption. Many recent studies have advocated Water Injection (WI) as an approach to replace or supplement existing knock mitigation techniques. Water reduces temperatures in the end gas zone due to its high latent heat of vaporization. Furthermore, water vapor acts as diluent in the combustion process. In this paper, the development of a novel closed-loop, model-based WI controller is discussed and critically analyzed.
Journal Article

Model-Based Control of Test Bench Conditioning Systems

2018-04-03
2018-01-0129
Engine test benches are crucial instruments to perform tests on internal combustion engines. Since many factors affect tests results, an engine test bench is usually equipped with several conditioning systems (oil, water and air temperature, air humidity, etc.), in order to maintain the controlled variables to the target values, throughout the test duration. The conditioning systems are often independently controlled by means of dedicated programmable logic controllers (PLC), but a centralized model-based management approach could offer several advantages in terms of promptness and accuracy. This work presents the application of such control methodology to oil, water, and HVAC (heating, ventilating, and air conditioning) conditioning systems, where each actuator is managed coupling model-based open loop controls to closed loop actions.
Journal Article

Technology Comparison for Spark Ignition Engines of New Generation

2017-09-04
2017-24-0151
New gasoline engine design is highly influenced by CO2 and emission limits defined by legislations, the demand for real conditions fuel economy, higher torque, higher specific power and lower cost. To reach the requirements coming from the end-users and legislations, especially for SI engines, several technologies are available, such as downsizing, including turbocharging in combination with direct injection. These technologies allow to solve the main issues of gasoline engines in terms of efficiency and performance which are knocking, part-load losses, and thermal stress at high power conditions. Moreover, other possibilities are under evaluation to allow further steps of enhancement for the even more challenging requirements. However, the benefits and costs given by the mix of these technologies must be accurately evaluated by means of objective tools and procedures in order to choose among the best alternatives.
Journal Article

Combustion Indexes for Innovative Combustion Control

2017-09-04
2017-24-0079
The continuous development of modern Internal Combustion Engine (ICE) management systems is mainly aimed at combustion control improvement. Nowadays, performing an efficient combustion control is crucial for drivability improvement, efficiency increase and pollutant emissions reduction. These aspects are even more crucial when innovative combustions (such as LTC or RCCI) are performed, due to the high instability and the high sensitivity with respect to the injection parameters that are associated to this kind of combustion. Aging of all the components involved in the mixture preparation and combustion processes is another aspect particularly challenging, since not all the calibrations developed in the setup phase of a combustion control system may still be valid during engine life.
Journal Article

A Control-Oriented Knock Intensity Estimator

2017-09-04
2017-24-0055
The performance optimization of modern Spark Ignition engines is limited by knock occurrence: heavily downsized engines often are forced to work in the Knock-Limited Spark Advance (KLSA) range. Knock control systems monitor the combustion process, allowing to achieve a proper compromise between performance and reliability. Combustion monitoring is usually carried out by means of accelerometers or ion sensing systems, but recently the use of cylinder pressure sensors is also becoming frequent in motorsport applications. On the other hand, cylinder pressure signals are often available in the calibration stage, where SA feedback-control based on the pressure signal can be used to avoid damages to the engine during automatic calibration. A predictive real-time combustion model could help optimizing engine performance, without exceeding the allowed knock severity.
Journal Article

Investigation of Water Injection Effects on Combustion Characteristics of a GDI TC Engine

2017-09-04
2017-24-0052
This paper presents simulation and experimental results of the effects of intake water injection on the main combustion parameters of a turbo-charged, direct injection spark ignition engine. Water injection is more and more considered as a viable technology to further increase specific output power of modern spark ignition engines, enabling extreme downsizing concepts and the associated efficiency increase benefits. The paper initially presents the main results of a one-dimensional simulation analysis carried out to highlight the key parameters (injection position, water-to-fuel ratio and water temperature) and their effects on combustion (in-cylinder and exhaust temperature reduction and knock tendency suppression). The main results of such study have then been used to design and conduct preliminary experimental tests on a prototype direct-injection, turbocharged spark ignition engine, modified to incorporate a new multi-point water injection system in the intake runners.
Technical Paper

Development of a Model for the Wall Film Formed by Impinging Spray Based on a Fully Explicit Integration Method

2005-09-11
2005-24-087
A wall film model has been implemented in a customized version of KIVA-3 code developed at University of Bologna. Under the hypothesis of `thin laminar flow' the model simulates the dynamics of a liquid wall film generated by impinging sprays. Particular care has been taken in numerical implementation of the model. The major phenomena taken into account in the present model are: wall film formation by impinging spray; body forces, such as gravity or acceleration of the wall; shear stress at the interface with the gas and no slip condition on the wall; momentum contribution and dynamic pressure generated by the tangential and normal component of the impinging drops; film evaporation by heat exchange with wall and surrounding gas. The model doesn't consider the effect of the wavy film motion and suppose that all the impinging droplets adhere to the film.
X