Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Deployment of Air Bags into the Thorax of an Out-of-Position Dummy

1999-03-01
1999-01-0764
The air bag has proven effective in reducing fatalities in frontal crashes with estimated decreases ranging from 11% to 30% depending on the size of the vehicle [IIHS-1995, Kahane-1996]. At the same time, some air bag designs have caused fatalities when front-seat passengers have been in close proximity to the deploying air bag [Kleinberger-1997]. The objective of this study was to develop an accurate and repeatable out-of-position test fixture to study the deployment of air bags into out-of-position occupants. Tests were performed with a 5th percentile female Hybrid III dummy and studied air bag loading on the thorax using draft ISO-2 out-of-position (OOP) occupant positioning. Two different interpretations of the ISO-2 positioning were used in this study. The first, termed Nominal ISO-2, placed the chin on the steering wheel with the spine parallel to the steering wheel.
Technical Paper

Open-Loop Chestbands for Dynamic Deformation Measurements

1998-02-23
980857
Originally designed for measuring closed-loop contours such as those around a human thorax, the External Peripheral Instrument for Deformation Measurement (EPIDM), or chestband, was developed to improve the measurement of dummy and cadaver thoracic response during impact. In the closed-loop configuration, the chestband wraps around on itself forming a closed contour. This study investigates the use of the chestband for dynamic deformation measurements in an open-loop configuration. In the open-loop configuration, the chestband does not generally form a closed contour. This work includes enhanced procedures and algorithms for the calculation of chestband deformation contours including the determination of static and dynamic chestband contours under several boundary conditions.
Technical Paper

The Interaction of Air Bags with Upper Extremities

1997-11-12
973324
Recently there has been a greater awareness of the increased risk of certain injuries associated with air bag deployment, especially the risks to small occupants, often women. These injuries include serious eye and upper extremity injuries and even fatalities. This study investigates the interaction of a deploying air bag with cadaveric upper extremities in a typical driving posture; testing concentrates on female occupants. The goals of this investigation are to determine the risk of upper extremity injury caused by primary contact with a deploying air bag and to elucidate the mechanisms of these upper extremity injuries. Five air bags were used that are representative of a wide range of air bag ‘aggressivities’ in the current automobile fleet. This air bag ‘aggressivity’ was quantified using the response of a dummy forearm under air bag deployment.
X