Refine Your Search

Search Results

Technical Paper

Neat Biodiesel Fuel Engine Tests and Preliminary Modelling

Engine performance and emission comparisons were made between the use of 100% soy, Canola and yellow grease derived biodiesel fuels and an ultra-low sulphur diesel fuel in the oxygen deficient regions, i.e. full or high load engine operations. Exhaust gas recirculation (EGR) was extensively applied to initiate low temperature combustion. An intake throttling valve was implemented to increase the differential pressure between the intake and exhaust in order to increase and enhance the EGR. The intake temperature, pressure, and EGR levels were modulated to improve the engine fuel efficiency and exhaust emissions. Furthermore, a preliminary ignition delay correlation under the influence of EGR was developed. Preliminary low temperature combustion modelling of the biodiesel and diesel fuels was also conducted. The research intends to achieve simultaneous reductions of nitrogen oxides and soot emissions in modern production diesel engines when biodiesel is applied.
Technical Paper

Preliminary Energy Efficiency Analyses of Diesel EGR Fuel Reforming with Flow Reversal and Central Fuelling

The diesel fuel reforming process in an exhaust gas recirculation (EGR) loop of a diesel engine is capable of utilizing the engine exhaust energy to support the endothermic process of hydrogen gas generation. However, the EGR stream commonly needs to be heated to enable the operation of the reformer and thus to sustain higher yield of hydrogen. A central-fuelling and flow-reversal embedment that is energy-efficient to raise the central temperatures of the catalytic flow-bed is therefore devised and tested to drastically reduce the supplemental heating to the EGR reformer. One-dimensional modeling analyses are conducted to evaluate the fuel delivery strategies and temperature profiles of the reformer at various reforming gas flow rates and engine-out exhaust temperatures and compositions. This research attempts to quantify the energy saving by the catalytic flow-reversal and central-fuelling embedment in comparison to a unidirectional flow EGR reformer.
Technical Paper

Heat Release Based Adaptive Control to Improve Low Temperature Diesel Engine Combustion

Heat-release and cylinder pressure based adaptive fuel-injection control tests were performed on a modern common-rail diesel engine to improve the engine operation in the low-temperature combustion (LTC) region. A single shot injection strategy with heavy amount of exhaust gas recirculation (EGR) was used to modulate the in-cylinder charge conditions to achieve the low-temperature combustion. Adaptive fuel-injection techniques were used to anchor the cylinder pressure characteristics in the desired crank angle window and thereby stabilize the engine operation. The response of the adaptive control to boost, fueling, and engine speed variations was also tested. A combination of adaptive fuel-injection and automatic boost/back-pressure controls had helped to make the transient emissions comparable to the steady-state LTC emissions.
Technical Paper

Energy Efficiency Analysis of Active-flow Operations in Diesel Engine Aftertreatment

Experiments are carried out with the diesel particulate filter and oxidation catalyst embedded in the active-flow configurations on a single cylinder diesel engine. The combined use of various active flow control schemes are identified to be capable of shifting the exhaust gas temperature, flow rate, and oxygen concentration to favorable windows for filtration, conversion, and regeneration processes. Empirical and theoretical investigations are performed with a transient one-dimensional single channel aftertreatment model developed in FORTRAN and MATLAB. The influence of the supplemental energy distribution along the length of aftertreatment device is evaluated. The theoretical analysis indicates that the active-flow control schemes have fundamental advantages in optimizing the converter thermal management including reduction in supplemental heating, increase in thermal recuperation, and improving overheating protection.
Technical Paper

Influence of Biodiesel Fuel on Diesel Engine Performance and Emissions in Low Temperature Combustion

The exhaust emission and performance characteristics of a 100% biodiesel fuel was evaluated on a single cylinder direct injection diesel engine that had been modified to allow multi-pulse diesel fuel injection at the intake port and independent control of intake heating, exhaust gas recirculation and throttling. Firstly, conventional single-shot direct injection tests were conducted and comparisons made between the use of an ultra-low sulphur diesel fuel and the biodiesel fuel. Secondly, tests for the premixed combustion of neat biodiesel were performed. Exhaust gas recirculation was applied extensively to initiate the low temperature combustion for the conventional in-cylinder single injection operation and to moderate the timing of the homogeneous charge compression ignition for the intake-port sequential injection. Because of the high viscosity and low volatility of the biodiesel, pilot-ignited homogeneous charge compression ignition was used.
Technical Paper

Adaptive Fuel Injection Tests to Extend EGR Limits on Diesel Engines

Exhaust gas recirculation (EGR) is effective to reduce nitrogen oxides (NOx) from diesel engines. However, when excessive EGR is applied, the engine operation reaches zones with higher combustion instability, carbonaceous emissions, and power losses. In order to improve the engine combustion process with the use of heavy EGR, the influences of boost pressure, intake temperature, and fuel injection timing are evaluated. An adaptive fuel injection strategy is applied as the EGR level is progressively elevated towards the limiting conditions. Additionally, characterization tests are performed to improve the control of the homogeneous charge compression ignition (HCCI) type of engine cycles, especially when heavy EGR levels are applied to increase the load level of HCCI operations. This paper constitutes the preparation work for a variety of algorithms currently being investigated at the authors' laboratory as a part of the model-based NOx control research.
Technical Paper

Real-time Heat Release Analysis for Model-based Control of Diesel Combustion

A number of cylinder-pressure derived parameters including the crank angles of maximum pressure, maximum rate of pressure rise, and 50% heat released are considered as among the desired feedback for cycle-by-cycle adaptive control of diesel combustion. For real-time computation of these parameters, the heat release analyses based on the first law of thermodynamics are used. This paper intends to identify the operating regions where the simplified heat release approach provides sufficient accuracy for control applications and also highlights those regions where its use can lead to significant errors in the calculated parameters. The effects of the cylinder charge-to-wall heat transfer and the temperature dependence of the specific heat ratio on the model performance are reported. A new computationally efficient algorithm for estimating the crank angle of 50% heat released with adequate accuracy is proposed for computation in real-time.
Technical Paper

Diesel EGR Fuel Reformer Improvement with Flow Reversal and Central Fueling

Empirical work has been conducted with an EGR fuel reformer configured in a flow reversal and central fueling embedment to improve the fuel dispersion quality and the reforming energy efficiency. Comprehensive comparison analyses are made between the unidirectional flow and the periodic reversal flow embodiments of similar substrate size and properties; and between the inlet and central heating schemes. With a unidirectional EGR reformer, a large amount of supplemental heating is commonly required prior to reforming. The central-fueling and flow-reversal embedment in this study is shown to significantly reduce the supplemental heating energy. The EGR cooler loading for the two strategies is also analyzed. One-dimensional modeling analyses are conducted to evaluate the fuel delivery strategies and temperature profiles of the reformer at various reforming gas flow rates and engine-out exhaust temperatures and compositions.
Technical Paper

Performance of Stirling Engine Hybrid Electric Vehicles: A Simulation Approach

Hybrid Vehicles have gained momentum in the automotive industry. The joint action of power sources and energy storage systems for energizing the vehicle improves the vehicle's fuel economy while reducing its pollutant emissions and noise levels, challenging automotive designers to optimize vehicle's cost, weight and control. The marketing success of hybrid vehicles significantly depends on the selection, integration and cost of the energy systems. The internal combustion engine, dominant of the vehicle market, has been the “option of choice” for auxiliary power unit of the hybrid vehicle, although other power sources as fuel cells, Stirling engines and gas turbines have been employed as well [1]. This document is focused in the application of Stirling engines as the power source for automobile propulsion.
Technical Paper

Prompt Heat Release Analysis to Improve Diesel Low Temperature Combustion

Diesel engines operating in the low-temperature combustion (LTC) mode generally tend to produce very low levels of NOx and soot. However, the implementation of LTC is challenged by the higher cycle-to-cycle variation with heavy EGR operation and the narrower operating corridors. The robustness and efficiency of LTC operation in diesel engines can be enhanced with improvements in the promptness and accuracy of combustion control. A set of field programmable gate array (FPGA) modules were coded and interlaced to suffice on-the-fly combustion event modulations. The cylinder pressure traces were analyzed to update the heat release rate concurrently as the combustion process proceeds prior to completing an engine cycle. Engine dynamometer tests demonstrated that such prompt heat release analysis was effective to optimize the LTC and the split combustion events for better fuel efficiency and exhaust emissions.
Technical Paper

Boundary Layer Enhanced Thermal Recuperation for Diesel Particulate Filter Regeneration under a Periodic Flow Reversal Operation

Diesel Particulate Filters (DPF) are viable to reduce smoke from diesel engines. An oxidation process is usually required to remove the Particulate Matter (PM) loading from the DPF substrates. In cases when the engine exhaust temperature is insufficient to initiate a thermal regeneration, supplemental energy is commonly applied to raise the exhaust gas and/or the DPF substrate temperatures. A flow reversal (FR) mechanism that traps a high temperature region in the DPF substrate by periodically altering the gas flow directions has been identified to be capable of reducing the supplemental energy and thus to improve the overall thermal efficiency of the engine. However, extended operations with low exhaust temperature lowers the DPF boundary temperatures that defers the regeneration processes. Furthermore, the temperature fluctuations caused by the periodic FR operation also increase the thermal stress in the DPF.
Technical Paper

Empirical and Theoretical Investigations of Active-flow Control on Diesel Engine After-treatment

Empirical and theoretical studies are made between active-flow control and passive-flow control schemes in investigating the influences of gas flow, heat transfer, chemical reaction, oxygen concentration, and substrate properties. The exhaust active-flow control includes the parallel alternating flow, partial restricting flow, periodic flow reversal, and extended flow stagnation that are found to be especially effective to treat engine exhausts that are difficult to cope with conventional passive-flow converters [1, 2]. The tests are set up on a single cylinder Yanmar engine. Theoretical studies are performed with the one-dimensional transient modeling techniques to analyze the thermal behavior of the diesel after-treatment systems when active flow control schemes are applied.
Technical Paper

Mode Switching to Improve Low Load Efficiency of an Ethanol-Diesel Dual-Fuel Engine

The dual-fuel application using ethanol and diesel fuels can substantially improve the classical trade-off between oxides of nitrogen (NOx) and smoke, especially at moderate-to-high load conditions. However, at low engine load levels, the use of a low reactivity fuel in the dual-fuel application usually leads to increased incomplete combustion products that in turn result in a significant reduction of the engine thermal efficiency. In this work, engine tests are conducted on a high compression ratio, single cylinder dual-fuel engine that incorporates the diesel direct-injection and ethanol port-injection. Engine load levels are identified, at which, diesel combustion offers better efficiency than the dual-fuel combustion while attaining low NOx and smoke emissions. Thereafter, a cycle-to-cycle based closed-loop controller is implemented for the combustion phasing and engine load control in both the diesel and dual-fuel combustion regimes.
Technical Paper

A Thermal Analysis of Active-flow Control on Diesel Engine Aftertreatment

One-dimensional transient modeling techniques are adapted to analyze the thermal behavior of lean-burn after-treatment systems when active flow control schemes are applied. The active control schemes include parallel alternating flow, partial restricting flow, and periodic flow reversal (FR) that are found to be especially effective to treat engine exhausts that are difficult to cope with conventional passive flow converters. To diesel particulate filters (DPF), lean NOx traps (LNT), and oxidation converters (OC), the combined use of active flow control schemes are identified to be capable of shifting the exhaust gas temperature, flow rate, and oxygen concentration to more favorable windows for the filtration, conversion, and regeneration processes. Comparison analyses are made between active flow control and passive flow control schemes in investigating the influences of gas flow, heat transfer, chemical reaction, oxygen concentration, and converter properties.
Journal Article

An Enabling Study of Diesel Low Temperature Combustion via Adaptive Control

Low temperature combustion (LTC), though effective to reduce soot and oxides of nitrogen (NOx) simultaneously from diesel engines, operates in narrowly close to unstable regions. Adaptive control strategies are developed to expand the stable operations and to improve the fuel efficiency that was commonly compromised by LTC. Engine cycle simulations were performed to better design the combustion control models. The research platform consists of an advanced common-rail diesel engine modified for the intensified single cylinder research and a set of embedded real-time (RT) controllers, field programmable gate array (FPGA) devices, and a synchronized personal computer (PC) control and measurement system.
Journal Article

Heat Release Pattern Diagnostics to Improve Diesel Low Temperature Combustion

Empirical results indicated that the engine emission and fuel efficiency of low-temperature combustion (LTC) cycles can be optimized by adjusting the fuel-injection scheduling in order to obtain appropriate combustion energy release or heat-release rate patterns. Based on these empirical results the heat-release characteristics were correlated with the regulated emissions such as soot, hydrocarbon and oxides of nitrogen. The transition from conventional combustion to LTC with the desired set of heat-release rate has been implemented. This transition was facilitated with the simplified heat-release characterization wherein each of the consecutive engine cycles was analyzed with a real-time controller embedded with an FPGA (field programmable gate array) device. The analyzed results served as the primary feedback control signals to adjust fuel injection scheduling. The experimental efforts included the boost/backpressure, exhaust gas recirculation, and load transients in the LTC region.
Journal Article

An Improvement on Low Temperature Combustion in Neat Biodiesel Engine Cycles

Extensive empirical work indicates that the exhaust emission and fuel efficiency of modern common-rail diesel engines characterise strong resilience to biodiesel fuels when the engines are operating in conventional high temperature combustion cycles. However, as the engine cycles approach the low temperature combustion (LTC) mode, which could be implemented by the heavy use of exhaust gas recirculation (EGR) or the homogeneous charge compression ignition (HCCI) type of combustion, the engine performance start to differ between the use of conventional and biodiesel fuels. Therefore, a set of fuel injection strategies were compared empirically under independently controlled EGR, intake boost, and exhaust backpressure in order to improve the neat biodiesel engine cycles.
Journal Article

Fuel Injection Strategies to Improve Emissions and Efficiency of High Compression Ratio Diesel Engines

Simultaneous low NOx (< 0.15 g/kWh) & soot (< 0.01 g/kWh) are attainable for enhanced premixed combustion that may lead to higher levels of hydrocarbons and carbon monoxide emissions as the engine cycles move to low temperature combustion, which is a departure from the ultra low hydrocarbon and carbon monoxide emissions, typical of the high compression ratio diesel engines. As a result, the fuel efficiency of such modes of combustion is also compromised (up to 5%). In this paper, advanced strategies for fuel injection are devised on a modern 4-cylinder common rail diesel engine modified for single cylinder research. Thermal efficiency comparisons are made between the low temperature combustion and the conventional diesel cycles. The fuel injection strategies include single injection with heavy EGR, and early multi-pulse fuel injection under low or medium engine loads respectively.
Journal Article

Efficacy of EGR and Boost in Single-Injection Enabled Low Temperature Combustion

Exhaust gas recirculation, fuel injection strategy and boost pressure are among the key enablers to attain low NOx and soot emissions simultaneously on modern diesel engines. In this work, the individual influence of these parameters on the emissions are investigated independently for engine loads up to 8 bar IMEP. A single-shot fuel injection strategy has been deployed to push the diesel cycle into low temperature combustion with EGR. The results indicated that NOx was a stronger respondent to injection pressure levels than to boost when the EGR ratio is relatively low. However, when the EGR level was sufficiently high, the NOx was virtually grounded and the effect of boost or injection pressure becomes irrelevant. Further tests indicated that a higher injection pressure lowered soot emissions across the EGR sweeps while the effect of boost on the soot reduction appeared significant only at higher soot levels.
Journal Article

Transient Build-up and Effectiveness of Diesel Exhaust Gas Recirculation

Modern diesel engines employ a multitude of strategies for oxides of nitrogen (NOx) emission abatement, with exhaust gas recirculation (EGR) being one of the most effective technique. The need for a precise control on the intake charge dilution (as a result of EGR) is paramount since small fluctuations in the intake charge dilution at high EGR rates may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency, especially at low to mid-engine loads. The control problem becomes more pronounced during transient engine operation; currently the trend is to momentarily close the EGR valve during tip-in or tip-out events. Therefore, there is a need to understand the transient EGR behaviour and its impact on the intake charge development especially under unstable combustion regimes such as low temperature combustion.