Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effect of Octane Rating and Charge Stratification on Combustion and Operating Range with DI PCCI Operation

2007-01-23
2007-01-0053
A single cylinder engine has been run with direct-injection premixed charge compression ignition (PCCI) operation. The operation is fueled with primary reference fuels for a wide variety of injection timing and equivalence ratio to investigate the effect of charge stratification and octane rating on PCCI combustion. The test results showed that although the change of the injection timing can gain the high combustion efficiency for a wide range of equivalence ratio, the combustion phasing where the high combustion efficiency is accomplished is not varied only by changing the injection timings. Therefore, the only change of injection timings does not improve the thermal efficiency which is influenced by the combustion phasing. On the other hand, at the fixed compression ratio, inlet air temperature and so on, the octane rating is useful in altering the combustion phasing.
Technical Paper

Spray and Combustion Characteristics of Reformulated Biodiesel with Mixing of Lower Boiling Point Fuel

2007-04-16
2007-01-0621
Authors propose the reformulation technique of physical properties of Biodiesel Fuel (BDF) by mixing lower boiling point fuels. In this study, waste cooking oil methyl ester (B100), which have been produced in Kyoto city, is used in behalf of BDF. N-Heptane (C7H16) and n-Dodecane (C12H26) are used as low and medium boiling point fuel. Mixed fuel of BDF with lower boiling point fuels have lighter quality as compared with neat BDF. This result is based on the chemical-thermo dynamical liquid-vapor equilibrium theory. This paper describes fundamental spray and combustion characteristics of mixed fuel of B100 with lower boiling point fuels as well as the reformulation technique. By mixing lower boiling point fuel, lighter quality fuels can be refined. Thus, mixed fuels have higher volatility and lower viscosity. Therefore, vaporization of mixed fuel spray is promoted and liquid phase penetration of mixed fuel shortens as compared with that of neat BDF.
Technical Paper

Controlling PCCI Combustion with Mixed Fuel - Application of Flashing Spray to Early Injection

2007-04-16
2007-01-0624
A diesel engine operating in premixed charge compression ignition (PCCI) mode promises the reduction of engine-out emissions of NOx and particulate matter. A serious issue for PCCI operation with the early injection timing during the compression stroke is the difficulty of controlling the mixture formation process. In this study, a mixed fuel consisting of high volatility fuel and high ignitability one is applied in order to develop a control technique for the mixture preparation. In particular, we focuses on a flash boiling phenomenon of mixed fuel. For pure substance, the quality of flashing spray is dominated by the degree of superheat. In contrast, that of mixed fuel is affected much by low boiling point fuel.
Technical Paper

Measurement of Diesel Spray Impingement and Fuel Film Characteristics Using Refractive Index Matching Method

2007-04-16
2007-01-0485
The fuel film thickness resulting from diesel fuel spray impingement was measured in a chamber at conditions representative of early injection timings used for low temperature diesel combustion. The adhered fuel volume and the radial distribution of the film thickness are presented. Fuel was injected normal to the impingement surface at ambient temperatures of 353 K, 426 K and 500 K, with densities of 10 kg/m3 and 25 kg/m3. Two injectors, with nozzle diameters of 100 μm and 120 μm, were investigated. The results show that the fuel film volume was strongly affected by the ambient temperature, but was minimally affected by the ambient density. The peak fuel film thickness and the film radius were found to increase with decreased temperature. The fuel film was found to be circular in shape, with an inner region of nearly constant thickness. The major difference observed with temperature was a decrease in the radial extent of the film.
Technical Paper

Thermal and Chemical Aging of Diesel Particulate Filters

2007-04-16
2007-01-1266
The effects of thermal and chemical aging on the performance of cordierite-based and high-porosity mullite-based diesel particulate filters (DPFs), were quantified, particularly their filtration efficiency, pressure drop, and regeneration capability. Both catalyzed and uncatalyzed core-size samples were tested in the lab using a diesel fuel burner and a chemical reactor. The diesel fuel burner generated carbonaceous particulate matter with a pre-specified particle-size distribution, which was loaded in the DPF cores. As the particulate loading evolved, measurements were made for the filtration efficiency and pressure drop across the filter using, respectively, a Scanning Mobility Particle Sizer (SMPS) and a pressure transducer. In a subsequent process and on a different bench system, the regeneration capability was tested by measuring the concentration of CO plus CO2 evolved during the controlled oxidation of the carbonaceous species previously deposited on the DPF samples.
Technical Paper

A Framework to Study Human Response to Whole Body Vibration

2007-06-12
2007-01-2474
A framework to study the response of seated operators to whole-body vibration (WBV) is presented in this work. The framework consists of (i) a six-degree-of-freedom man-rated motion platform to play back ride files of typical heavy off-road machines; (ii) an optical motion capture system to collect 3D motion data of the operators and the surrounding environment (seat and platform); (iii) a computer skeletal model to embody the tested subjects in terms of their body dimensions, joint centers, and inertia properties; (iv) a marker placement protocol for seated positions that facilitates the process of collecting data of the lower thoracic and the lumbar regions of the spine regardless of the existence of the seatback; and (v) a computer human model to solve the inverse kinematics/dynamic problem for the joint profiles and joint torques. The proposed framework uses experimental data to answer critical questions regarding human response to WBV.
Technical Paper

The structure analysis of diesel free spray with phase change~(Effect of viscosity change of vapor-phase fuel on the structure of diesel free spray)

2000-06-12
2000-05-0100
In this study, the purpose is placed in analysis the structure of diesel spray and, especially, making clear the mixture formation process in the evaporative diesel spray. The liquid fuel was injected from a single-hole nozzle (1/d = 1.0 mm/0.2 mm) into a constant-volume vessel possessing phenomena visualization under high pressure and temperature field. As for measurement method, in order to investigate liquid and vapor-phase of injected spray, exciplex fluorescence method was applied in the evaporative fuel spray. And the interested view region in injected spray is the downstream spray. For the minute investigation of spray flow, the liquid and vapor-phase region is taken with 35 mm still camera and CCD camera, respectively.
Technical Paper

Soot formation/oxidation and fuel-vapor concentration in a DI diesel engine using laser-sheet imaging method

2000-06-12
2000-05-0078
Four kinds of optical measurements were performed to investigate the process of soot formation and oxidation in a direct-injection (DI) diesel engine. Measurements were carried out in an optically accessible DI diesel engine that allows planar laser sheet for combustion diagnostics to enter the combustion chamber either horizontally or along the axis of the fuel jet. The temporal and spatial distribution of soot particles has been investigated using the laser- induced incandescence (LII) and high-speed direct photography. Fuel vapor concentration, which is directly linked to the soot formation process in diesel combustion, has been deduced from the images obtained by the measurements of laser shadowgraph and elastic Mie scattering. According to the experimental results, soot formation begins to occur near the injector nozzle in which a fuel-rich mixture is distributed with a homogeneous condition. LII signal is dominated by the fuel vapor concentration in initial combustion period.
Technical Paper

Mixing and soot formation processes in transient gas jet flame

2000-06-12
2000-05-0075
A transient gas jet and its flame are the most fundamental phenomena of a transient spray and its flame breaking out in a CI engine and an SI engine with the direct injection system. In the case of CNG and LNG engines, the fuel itself is just gaseous state. The 2-LIF technique was applied to the transient gas jet to obtain the mixing process between the surroundings and it, and the simultaneous application of LII and LIS techniques were applied to the transient gas jet flame to obtain the soot formation process.
Technical Paper

Experimental and Simulated Results Detailing the Sensitivity of Natural Gas HCCI Engines to Fuel Composition

2001-09-24
2001-01-3609
Natural gas quality, in terms of the volume fraction of higher hydrocarbons, strongly affects the auto-ignition characteristics of the air-fuel mixture, the engine performance and its controllability. The influence of natural gas composition on engine operation has been investigated both experimentally and through chemical kinetic based cycle simulation. A range of two component gas mixtures has been tested with methane as the base fuel. The equivalence ratio (0.3), the compression ratio (19.8), and the engine speed (1000 rpm) were held constant in order to isolate the impact of fuel autoignition chemistry. For each fuel mixture, the start of combustion was phased near top dead center (TDC) and then the inlet mixture temperature was reduced. These experimental results have been utilized as a source of data for the validation of a chemical kinetic based full-cycle simulation.
Technical Paper

A Decoupled Model of Detailed Fluid Mechanics Followed by Detailed Chemical Kinetics for Prediction of Iso-Octane HCCI Combustion

2001-09-24
2001-01-3612
We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. The methodology judiciously uses a fluid mechanics code followed by a chemical kinetics code to achieve great reduction in the computational requirements; to a level that can be handled with current computers. In previous papers, our sequential, multi-zone methodology has been applied to HCCI combustion of short-chain hydrocarbons (natural gas and propane). Applying the same procedure to long-chain hydrocarbons (iso-octane) results in unacceptably long computational time. In this paper, we show how the computational time can be made acceptable by developing a segregated solver. This reduces the run time of a ten-zone problem by an order of magnitude and thus makes it much more practical to make combustion studies of long-chain hydrocarbons.
Technical Paper

Investigation of Hydrocarbon Emissions from a Direct Injection-Gasoline Premixed Charge Compression Ignited Engine

2002-03-04
2002-01-0419
The causes of Unburned Hydrocarbon (UHC) emissions from a premixed compression ignited engine were investigated for both homogeneous and stratified charge conditions. A fast response Flame Ionization Detector (fast FID) was used to provide cycle-resolved UHC exhaust emission measurements. These fast FID UHC measurements were coupled with numerical flow simulation results to provide quantitative and qualitative insight into the sources of UHC emissions. The combined results were used to evaluate the effects of engine load, local gas temperatures, fuel stratification, and crevice quenching on UHC emissions.
Technical Paper

Experimental Investigation of Direct Injection-Gasoline for Premixed Compression Ignited Combustion Phasing Control

2002-03-04
2002-01-0418
A direct injection-gasoline (DI-G) system was applied to a heavy-duty diesel-type engine to study the effects of charge stratification on the performance of premixed compression ignited combustion. The effects of the fuel injection parameters on combustion phasing were of primary interest. The simultaneous effects of the fuel stratification on Unburned Hydrocarbon (UHC), Oxides of Nitrogen (NOx), Carbon Monoxide (CO), and smoke emissions were also measured. Engine tests were conducted with altered injection parameters covering the entire load range of normally aspirated Homogeneous Charge Compression Ignited (HCCI) combustion. Combustion phasing tests were also conducted at several engine speeds to evaluate its effects on a fuel stratification strategy.
Technical Paper

System Efficiency Issues for Natural Gas Fueled HCCI Engines in Heavy-Duty Stationary Applications

2002-03-04
2002-01-0417
Homogeneous Charge Compression Ignition (HCCI) has been proposed for natural gas engines in heavy duty stationary power generation applications. A number of researchers have demonstrated, through simulation and experiment, the feasibility of obtaining high gross indicated thermal efficiencies and very low NOx emissions at reasonable load levels. With a goal of eventual commercialization of these engines, this paper sets forth some of the primary challenges in obtaining high brake thermal efficiency from production feasible engines. Experimental results, in conjunction with simulation and analysis, are used to compare HCCI operation with traditional lean burn spark ignition performance. Current HCCI technology is characterized by low power density, very dilute mixtures, and low combustion efficiency. The quantitative adverse effect of each of these traits is demonstrated with respect to the brake thermal efficiency that can be expected in real world applications.
Technical Paper

Evaporating Spray Concentration Measurementsfrom Small and Medium Bore Diesel Injectors

2002-03-04
2002-01-0219
Vapor concentration measurements were performed for two unit injectors typically found in small- and medium-bore applications under evaporating conditions similar to those experienced in Diesel engines. Ambient gas temperatures of 800 and 1000 K and an ambient density of 15 kg/m3 were investigated using a constant volume combustion-type spray chamber. The exciplex laserinduced fluorescence technique with TMPD/naphthalene doped into the fuel was used to quantitatively determine the vapor-phase concentration and liquid-phase extent. The vapor-phase concentration was quantified using a previously developed method that includes corrections for the temperature dependence of the TMPD fluorescence, laser sheet absorption, and the laser sheet intensity profile. The effect of increasing ambient temperature (1000 vs. 800 K) was significant on intact liquid length, and on the spray-spreading angle in the early portion of the injection period.
Technical Paper

Design and Testing of a Prototype Hybrid-Electric Split-Parallel Crossover Sports Utility Vehicle

2007-04-16
2007-01-1068
The University of Wisconsin - Madison Hybrid Vehicle Team has designed, fabricated, tested and optimized a four-wheel drive, charge sustaining, split-parallel hybrid-electric crossover vehicle for entry into the 2006 Challenge X competition. This multi-year project is based on a 2005 Chevrolet Equinox platform. Trade-offs in fuel economy, greenhouse gas impact (GHGI), acceleration, component packaging and consumer acceptability were weighed to establish Wisconsin's Vehicle Technical Specifications (VTS). Wisconsin's Equinox, nicknamed the Moovada, utilizes a General Motors (GM) 110 kW 1.9 L CIDI engine coupled to GM's 6-speed F40 transmission. The rear axle is powered by a 65 kW Ballard induction motor/gearbox powered from a 44-module (317 volts nominal) Johnson Controls Inc., nickel-metal hydride hybrid battery pack. It includes a newly developed proprietary battery management algorithm which broadcasts the battery's state of charge onto the CAN network.
Technical Paper

Detailed Diesel Exhaust Particulate Characterization and DPF Regeneration Behavior Measurements for Two Different Regeneration Systems

2007-04-16
2007-01-1063
Three distinct types of diesel particulate matter (PM) are generated in selected engine operating conditions of a single-cylinder heavy-duty diesel engine. The three types of PM are trapped using typical Cordierite diesel particulate filters (DPF) with different washcoat formulations and a commercial Silicon-Carbide DPF. Two systems, an external electric furnace and an in-situ burner, were used for regeneration. Furnace regeneration experiments allow the collected PM to be classified into two categories depending on oxidation mechanism: PM that is affected by the catalyst and PM that is oxidized by a purely thermal mechanism. The two PM categories prove to contribute differently to pressure drop and transient filtration efficiency during in-situ regeneration.
Technical Paper

Effect of Initial Residual Stress on Crack Initiation from Tiny Holes of Brake Discs for Motorcycles

2007-10-07
2007-01-3952
The purpose of this study is to clarify how the residual stress determined by the configuration of weight reduction holes affects the crack initiation in the brake discs for large motorcycles under the over loading condition. Two kinds of test samples of the one-piece type brake disc were used where the configuration of the weight reduction holes were different. The test result showed that the crack initiation life was significantly changed due to the configuration of weight reduction holes. The 3D FEM results of heat transfer and thermal stress analysis explained that the stress relaxation was dependent on the configuration of weight reduction holes of the disc because the initial thermal stress was directly determined by the simple stress distribution around each hole. This study confirmed that the configuration of weight reduction holes plays a decisive role in determining the design of the brake disc.
Technical Paper

CFD Modeling of the Multiphase Flow and Heat Transfer for Piston Gallery Cooling System

2007-10-29
2007-01-4128
Numerical models are used in this study to investigate the oil flow and heat transfer in the piston gallery of a diesel engine. An experiment is set up to validate the numerical models. In the experiment a fixed, but adjustable steel plate is instrumented and pre-heated to a certain temperature. The oil is injected vertically upwards from an underneath injector and impinges on the bottom of the plate. The reduction of the plate temperature is recorded by the thermocouples pre-mounted in the plate. The numerical models are used to predict the temperature history at the thermocouple locations and validated with the experimental data. After the rig model validation, the numerical models are applied to evaluate the oil sloshing and heat transfer in the piston gallery. The piston motion is modeled by a dynamic mesh model, and the oil sloshing is modeled by the VOF (volume of fluid) multiphase model.
Technical Paper

Combustion and Lift-Off Characteristics of n-Heptane Sprays Using Direct Numerical Simulations

2007-10-29
2007-01-4136
Fundamental simulations using DNS type procedures were used to investigate the ignition, combustion characteristics and the lift-off trends of a spatially evolving turbulent liquid fuel jet. In particular, the spatially evolving n-Heptane spray injected in a two-dimensional rectangular domain with an engine like environment was investigated. The computational results were compared to the experimental observations from an optical engine as reported in the literature. It was found that an initial fuel rich combustion downstream of the spray tip is followed by diffusion combustion. Investigations were also made to understand the effects of injection velocity, ambient temperature and the droplet radius on the lift-off length. For each of these parameters three different values in a given range were chosen. For both injection velocity and droplet radius, an increase resulted in a near linear increase in the lift-off length.
X