Refine Your Search

Topic

Search Results

Journal Article

The Visualization of Soot Late in the Diesel Combustion Process by Laser Induced Incandescence with a Vertical Laser Sheet

2015-04-14
2015-01-0801
Although soot-formation processes in diesel engines have been well characterized during the mixing-controlled burn, little is known about the distribution of soot throughout the combustion chamber after the end of appreciable heat release during the expansion and exhaust strokes. Hence, the laser-induced incandescence (LII) diagnostic was developed to visualize the distribution of soot within an optically accessible single-cylinder direct-injection diesel engine during this period. The developed LII diagnostic is semi-quantitative; i.e., if certain conditions (listed in the Appendix) are true, it accurately captures spatial and temporal trends in the in-cylinder soot field. The diagnostic features a vertically oriented and vertically propagating laser sheet that can be translated across the combustion chamber, where “vertical” refers to a direction parallel to the axis of the cylinder bore.
Journal Article

Pathline Analysis of Full-cycle Four-stroke HCCI Engine Combustion Using CFD and Multi-Zone Modeling

2008-04-14
2008-01-0048
This paper investigates flow and combustion in a full-cycle simulation of a four-stroke, three-valve HCCI engine by visualizing the flow with pathlines. Pathlines trace massless particles in a transient flow field. In addition to visualization, pathlines are used here to trace the history, or evolution, of flow fields and species. In this study evolution is followed from the intake port through combustion. Pathline analysis follows packets of intake charge in time and space from induction through combustion. The local scalar fields traversed by the individual packets in terms of velocity magnitude, turbulence, species concentration and temperatures are extracted from the simulation results. The results show how the intake event establishes local chemical and thermal environments in-cylinder and how the species respond (chemically react) to the local field.
Technical Paper

A Fundamental Study on Ignition Characteristics of Two-Component Fuel in a Diesel Spray

2006-10-16
2006-01-3383
The authors have explored the potential of fuel to control spray and its combustion processes in a diesel engine. Fuel has some potential for low emission and high thermal efficiency because its volatility and ignitability are one of the ultimate performing factors of the engines. In present study, the ignition process of mixed fuel spray was investigated in a constant volume combustion vessel and in a rapid compression and expansion machine, The ignition delay based on the diagram of rate of the heat release, the imaging of natural flame emissions and the numerical simulation were carried out to clarify the effect of the physical and chemical properties of mixed fuel on ignition characteristics.
Journal Article

Effect of Off-Axis Needle Motion on Internal Nozzle and Near Exit Flow in a Multi-Hole Diesel Injector

2014-04-01
2014-01-1426
The internal structure of Diesel fuel injectors is known to have a significant impact on the nozzle flow and the resulting spray emerging from each hole. In this paper the three-dimensional transient flow structures inside a Diesel injector is studied under nominal (in-axis) and realistic (including off-axis lateral motion) operating conditions of the needle. Numerical simulations are performed in the commercial CFD code CONVERGE, using a two-phase flow representation based on a mixture model with Volume of Fluid (VOF) method. Moving boundaries are easily handled in the code, which uses a cut-cell Cartesian method for grid generation at run time. First, a grid sensitivity study has been performed and mesh requirements are discussed. Then the results of moving needle calculations are discussed. Realistic radial perturbations (wobbles) of the needle motion have been applied to analyze their impact on the nozzle flow characteristics.
Technical Paper

Two-Color Imaging of In-Cylinder Soot Concentration and Temperature in a Heavy-Duty DI Diesel Engine with Comparison to Multidimensional Modeling for Single and Split Injections

1998-02-23
980524
Two-Color imaging optics were developed and used to observe soot emission processes in a modern heavy-duty diesel engine. The engine was equipped with a common rail, electronically-controlled, high-pressure fuel injection system that is capable of up to four injection pulses per engine cycle. The engine was instrumented with an endoscope system for optical access for the combustion visualization. Multidimensional combustion and soot modeling results were used for comparisons to enhance the understanding and interpretation of the experimental data. Good agreement between computed and measured cylinder pressures, heat release and soot and NOx emissions was achieved. In addition, good qualitative agreement was found between in-cylinder soot concentration (KL) and temperature fields obtained from the endoscope images and those obtained from the multidimensional modeling.
Technical Paper

Process Control Standards for Technology Development

1998-04-08
981502
Engineering new technology and products challenges managers to balance design innovation and program risk. To do this, managers need methods to judge future results to avoid program and product disasters. Besides the traditional prediction tools of schedule, simulations and “iron tests”, process control standards (with measurements) can also be applied to the development programs to mitigate risks. This paper briefly discusses the theory and case history behind some new process control methods and standards currently in place at Caterpillar's Electrical & Electronics department. Process standards reviewed in this paper include process mapping, ISO9001, process controls, and process improvement models (e.g. SEI's CMMs.)
Technical Paper

The structure analysis of diesel free spray with phase change~(Effect of viscosity change of vapor-phase fuel on the structure of diesel free spray)

2000-06-12
2000-05-0100
In this study, the purpose is placed in analysis the structure of diesel spray and, especially, making clear the mixture formation process in the evaporative diesel spray. The liquid fuel was injected from a single-hole nozzle (1/d = 1.0 mm/0.2 mm) into a constant-volume vessel possessing phenomena visualization under high pressure and temperature field. As for measurement method, in order to investigate liquid and vapor-phase of injected spray, exciplex fluorescence method was applied in the evaporative fuel spray. And the interested view region in injected spray is the downstream spray. For the minute investigation of spray flow, the liquid and vapor-phase region is taken with 35 mm still camera and CCD camera, respectively.
Technical Paper

Investigation of MicroFlow Machining Effects on Diesel Injector Spray Characteristics

2004-03-08
2004-01-0026
An investigation of the effect of microflow machining on the spray characteristics of diesel injectors was undertaken. A collection of four VCO injector tips were tested prior to and after an abrasive flow process using a high viscosity media. The injector nozzles were tested on a spray fixture. Rate of injection measurements and high-speed digital images were used for the quantification of the air entrainment rate. Comparisons of the spray characteristics and A/F ratios were made for conditions of before and after the abrasive flow process. Results showed a significant decrease in the injection-to-injection variability and improvement of the spray symmetry. A link between the quantity of air entrained and potential differences in spray plume internal chemical composition and temperature is proposed via equilibrium calculations.
Technical Paper

Effect of Gas Density and the Number of Injector Holes on the Air Flow Surrounding Non-Evaporating Transient Diesel Sprays

2001-03-05
2001-01-0532
The effect of ambient gas density and the number of injector holes on the characteristics of airflow surrounding non-evaporating transient diesel sprays inside a constant volume chamber were investigated using a 6-hole injector. Particle Image Velocimetry (PIV) was used to measure the gas velocities surrounding a spray plume as a function of space and time. A conical control surface surrounding the spray plume was chosen as a representative side entrainment surface. The positive normal velocities across the control surface of single-hole injection sprays were higher than those of 6-hole injection sprays. An abrupt increase in velocities tangential to the control surface near the chamber wall suggests that the recirculation of surrounding gas is accelerated by spray wall impingement.
Technical Paper

The Effect of Fuel-Vapor Concentration on the Process of Initial Combustion and Soot Formation in a DI Diesel Engine Using LII and LIEF

2001-03-05
2001-01-1255
A phenomenological or empirical model based on experimental results obtained from various optical measurements is critical for the understanding of DI diesel combustion phenomena as well as for the improvement of its emission characteristics. Such a model could be realized by the application of advanced optical measurement, which is able to isolate a particular phenomenon amongst complicated physical and chemical interactions, to a DI diesel combustion field. The authors have conducted experimental studies to clarify the combustion characteristics of unsteady turbulent diffusion flames in relation to the soot formation and oxidation process in a small-sized DI diesel engine. In the present study, the effect of fuel vapor concentration on the process of early combustion and soot formation has been investigated using several optical measurements.
Technical Paper

Visualization techniques to identify and quantify sources and paths of exterior noise radiated from stationary and nonstationary vehicles

2000-06-12
2000-05-0326
In recent years, Nearfield Acoustical Holography (NAH) has been used to identify stationary vehicle exterior noise sources. However that application has usually been limited to individual components. Since powertrain noise sources are hidden within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial field that combine to create the complete exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address these concerns: it is described here. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. In the second part of this paper, the use of farfield arrays is considered. Several array techniques have previously been applied to identify noise sources on moving vehicles.
Technical Paper

Air Flow Characteristics Surrounding Evaporating Transient Diesel Sprays

2002-03-04
2002-01-0499
Airflow characteristics surrounding evaporating transient diesel sprays inside a constant volume chamber under temperatures around 1100 K were investigated using a 6-hole injector and a single-hole injector. Particle Image Velocimetry (PIV) was used to measure the gas velocities surrounding a spray plume as a function of space and time. A conical control surface surrounding the spray plume was chosen as a representative side entrainment surface. The normal velocities crossing the control surface toward the spray plume for single-hole injection sprays were higher than those of 6-hole injection sprays. The velocities tangential to the control surface toward the injector tip for the single-hole injection sprays were lower than those of 6-hole injection sprays. An abrupt increase in tangential velocities near the chamber wall suggests that the recirculation of surrounding gas was accelerated by the spray wall impingement, both for non-evaporating and evaporating sprays.
Technical Paper

On the Calibration of Single-Shot Planar Laser Imaging Techniques in Engines

2002-03-04
2002-01-0748
The noise characteristics of four camera systems representative of those typically used for laser-imaging experiments (a back-illuminated slow-scan camera, a frame-straddling slow-scan camera, an intensified slow-scan camera and an intensified video-rate camera) were investigated, and the results are presented as a function of the signal level and illumination level. These results provide the maximum possible signal-to-noise ratio for laser-imaging experiments, and represent the limit of quantitative signal interpretation. A calibration strategy for engine data that limits the uncertainties associated with thermodynamic and optical correction was presented and applied to engine data acquired with two of the camera systems. When a rigorous analysis of the signal is performed it is seen that shot noise limits the quantitative interpretation of the data for most typical laser-imaging experiments, and obviates the use of single-pixel data.
Technical Paper

Visualization of the Cavitating Flow inside the Nozzle Hole Using by Enlarged Acrylic Nozzle

2011-08-30
2011-01-2062
In this study, it is purpose to make clear the effect of cavitation phenomenon on the spray atomization. In this report, the cavitation phenomenon inside the nozzle hole was visualized and the pressure measurements along the wall of the nozzle hole were carried out by use of 25-times enlarged acrylic nozzle. For the representatives of regular gasoline, single and two-component fuels were used as a test fuel. In addition, various cavitating flow patterns same as experimental conditions were simulated by use of Barotropic model incorporated in commercial code of Star-CD scheme, and compared with experimental results.
Technical Paper

The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine

2006-04-03
2006-01-0197
Engine-out CO emission and fuel conversion efficiency were measured in a highly-dilute, low-temperature diesel combustion regime over a swirl ratio range of 1.44-7.12 and a wide range of injection timing. At fixed injection timing, an optimal swirl ratio for minimum CO emission and fuel consumption was found. At fixed swirl ratio, CO emission and fuel consumption generally decreased as injection timing was advanced. Moreover, a sudden decrease in CO emission was observed at early injection timings. Multi-dimensional numerical simulations, pressure-based measurements of ignition delay and apparent heat release, estimates of peak flame temperature, imaging of natural combustion luminosity and spray/wall interactions, and Laser Doppler Velocimeter (LDV) measurements of in-cylinder turbulence levels are employed to clarify the sources of the observed behavior.
Technical Paper

Intake Valve Flow Measurements Using PIV

1993-10-01
932700
Intake valve flow patterns have been measured quantitatively using particle image velocimetry (PIV) for a commercial 4-valve diesel cylinder head and valve system. The measurements have been made for low (600 engine RPM) and higher (1000 engine RPM) speeds, and at several planes in the valve curtain area. The measurements involve double exposure photography of laser light scattered by seed particles (≅1 μm) from a laser light sheet (≅ 0.5 mm by 50 mm) through an imaging system onto silver halide film. Subsequent processing produces the local particle displacement between the two exposures. Combined with the known time interval between exposures, the displacement information can produce velocity vectors at many locations in the field of view. The results of the experiments are shown as vector plots for each operating condition. In the plane of the illuminating laser sheet, velocity vectors representing local gas velocity are produced.
Technical Paper

Hydrodynamics of Droplet Impingement on a Heated Surface

1993-03-01
930919
The impingement of liquid fuels on surfaces in IC engines affects performance and emissions. To better understand liquid/solid interactions, the impact of single droplets on a healed surface was experimentally examined. The droplet impingement was photographed with a high speed cine camera to obtain a history of the hydrodynamics of the impingement process. Images obtained from the cine photography were inspected to determine hydrodynamic regimes: wetting, transition, and non-wetting, associated with the specific impingement conditions (droplet size, velocity, surface temperature, and ambient pressure). Images from selected impingement conditions were further analyzed to quantify the atomization resulting from the impingement.
Technical Paper

Determination of Flame-Front Equivalence Ratio During Stratified Combustion

2003-03-03
2003-01-0069
Combustion under stratified operating conditions in a direct-injection spark-ignition engine was investigated using simultaneous planar laser-induced fluorescence imaging of the fuel distribution (via 3-pentanone doped into the fuel) and the combustion products (via OH, which occurs naturally). The simultaneous images allow direct determination of the flame front location under highly stratified conditions where the flame, or product, location is not uniquely identified by the absence of fuel. The 3-pentanone images were quantified, and an edge detection algorithm was developed and applied to the OH data to identify the flame front position. The result was the compilation of local flame-front equivalence ratio probability density functions (PDFs) for engine operating conditions at 600 and 1200 rpm and engine loads varying from equivalence ratios of 0.89 to 0.32 with an unthrottled intake. Homogeneous conditions were used to verify the integrity of the method.
Technical Paper

Comparison of Single Gear Tooth and Cantilever Beam Bending Fatigue Testing of Carburized Steel

1995-02-01
950212
The bending fatigue performance of gears, cantilever beam specimens, and notched-axial specimens were evaluated and compared. Specimens were machined from a modified SAE-4118 steel, gas-carburized, direct-quenched and tempered. Bending fatigue specimens were characterized by light metallography to determine microstructure and prior austenite grain size, x-ray analysis for residual stress and retained austenite measurements, and scanning electron microscopy to evaluate fatigue crack initiation, propagation and overload. The case and core microstructures, prior austenite grain sizes and case hardness profiles from the various types of specimens were similar. Endurance limits were determined to be about 950 MPa for both the cantilever beam and notched-axial fatigue specimens, and 1310 MPa for the single gear tooth specimens.
Technical Paper

Transient Spray Characteristics of a Direct-Injection Spark-Ignited Fuel Injector

1997-02-24
970629
This paper describes the transient spray characteristics of a high pressure, single fluid injector, intended for use in a direct-injection spark-ignited (DISI) engine. The injector was a single hole, pintle type injector and was electronically controlled. A variety of measurement diagnostics, including full-field imaging and line-of-sight diffraction based particle sizing were employed for spray characterization. Transient patternator measurements were also performed to obtain temporally resolved average mass flux distributions. Particle size and obscuration measurements were performed at three locations in the spray and at three injection pressures: 3.45 MPa (500 psi), 4.83 Mpa (700 psi), and 6.21 MPa (900 psi). Results of the spray imaging experiments indicated that the spray shapes varied with time after the start of injection and contained a leading mass, or slug along the center line of the spray.
X