Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

NVH of Electric Vehicles with Range Extender

2010-06-09
2010-01-1404
Intensive R&D is currently performed worldwide on hybrid and electric vehicles. For full electric vehicles the driving range is limited by the capacity of currently available batteries. If such a vehicle shall increase its driving range some range extending backup system should be available. Such a Range Extender is a small system of combustion engine and electric generator which produces the required electricity for charging the batteries in time. Since the acoustic response of an electric motor driving the vehicle and of a combustion engine as part of a Range Extender is very different by nature an extensive acoustic tuning of the Range Extender is necessary to meet the requirements of exterior vehicle noise and passenger comfort. This paper describes the NVH (noise, vibration & harshness) development work of a range extender within the AVL approach of an electrically driven passenger car with range extender.
Technical Paper

A Software Tool for Noise Quality and Brand Sound Development

2001-04-30
2001-01-1573
For noise quality and brand sound design of passenger cars a unique software tool is currently used by our clients world-wide to evaluate and optimise the interior noise quality and brand sound aspects of passenger cars on an objective basis. The software tools AVL-VOICE and AVL-COMFORT are designed for the objective analysis of interior noise quality, for benchmarking, for the definition of noise quality targets and most important for effective vehicle sound engineering. With this tool, the target orientated implementation of the required interior noise quality or brand sound by predictable hardware modifications into passenger cars - for tailor made joy of driving - becomes feasible. The use of this tools is drastically reducing vehicle evaluation time and sound engineering effort when compared with traditional jury subjective evaluation methods and standard acoustic NVH optimisation procedures.
Technical Paper

SOURCE - A Stereophonic System for Engine and Vehicle Sound Recordings

2003-05-05
2003-01-1685
The subjectively perceived playback quality of conventional artificial head recordings does not fully comply with the original perception of engine and vehicle interior sound. There exist differences in subjective perception between different artificial heads and even between models of one supplier. Additionally, the listening situations are often judged unnatural. One important reason for these problems is the fact that the transfer function of an artificial head system is always different from the torso and the outer ear transfer function of a specific person. The neurological processing of a specific test person is not trained to the significantly different head related transfer functions of the conventional artificial heads. Especially the significant differences of the outer ear transfer functions between an artificial head and a specific test person are considered as a main reason for an unnatural playback quality.
Technical Paper

Dynamic Substructuring for Sources Contributions Analysis in Internal Combustion Engines

2016-06-15
2016-01-1761
For vibration and acoustics vehicle development, one of the main challenges is the identification and the analysis of the noise sources, which is required in order to increase the driving comfort and to meet the stringent legislative requirements for the vehicle noise emission. Transfer Path Analysis (TPA) is a fairly well established technique for estimating and ranking individual low-frequency noise or vibration contributions via the different transmission paths. This technique is commonly applied on test measurements, based on prototypes, at the end of the design process. In order to apply such methodology already within the design process, a contribution analysis method based on dynamic substructuring of a multibody system is proposed with the aim of improving the quality of the design process for vehicle NVH assessment and to shorten development time and cost.
Technical Paper

A 3D Linear Acoustic Network Representation of Mufflers with Perforated Elements and Sound Absorptive Material

2017-06-05
2017-01-1789
The acoustics of automotive intake and exhaust systems is typically modeled using linear acoustics or gas-dynamics simulation. These approaches are preferred during basic sound design in the early development stages due to their computational efficiency compared to complex 3D CFD and FEM solutions. The linear acoustic method reduces the component being modelled to an equivalent acoustic two-port transfer matrix which describes the acoustic characteristic of the muffler. Recently this method was used to create more detailed and more accurate models based on a network of 3D cells. As the typical automotive muffler includes perforated elements and sound absorptive material, this paper demonstrates the extension of the 3D linear acoustic network description of a muffler to include the aforementioned elements. The proposed method was then validated against experimental results from muffler systems with perforated elements and sound absorptive material.
Technical Paper

Development and Application of 3D Generic Cells to the Acoustic Modelling of Exhaust Systems

2011-05-17
2011-01-1526
The acoustic simulation of internal combustion engine exhaust systems is an important aspect to meet customer expectations and legislation targets. One dimensional gas dynamic simulation tools are used for the calculation of the exhaust orifice noise in the early stages of the engine development process. This includes the prediction of the acoustic performance of individual components in the exhaust line. One common element used in exhaust systems to increase the acoustic damping is the plug flow muffler. This study looks at the prediction of acoustic performance of various plug mufflers at different flow velocities. These include a single plug muffler, a double plug muffler and an eccentric plug muffler with different porosities for the perforated sections. To this purpose a generic 3D cell approach was developed and applied.
Technical Paper

Meeting Future Demands for Quieter Commercial Powertrain Systems

1997-05-20
972042
Noise legislations and the increasing customer demands determine the NVH-development of modern commercial vehicles. In this paper suitable engineering approaches will be discussed. In order to meet the very stringent legislative requirements of the EEC and some other countries refinement of all vehicle noise sources is required. Cost-effective solutions, however, can only be found with low-noise powertrains, thus being able to avoid excessive noise packages on the vehicle. There is increasing demand, because modular systems should be ready to power a variety of different trucks and busses and allow for easy servicability. With this focus on powertrain noise, the paper discusses and outlines the technological developments required to achieve sufficient noise reduction which aims towards a 1m engine noise level of 93 dBA measured in an acoustic test cell under rated conditions.
Technical Paper

The Creation of a Car Interior Noise Quality Index for the Evaluation of Rattle Phenomena

1997-05-20
972018
Rattle noise produced in the vehicle interior due to broadband excitation by road irregularities is a major concern with respect to driving comfort, and therefore has become one of the most important topics of acoustic development in recent years. A quantification i.e. measurement of this rattle noise is of fundamental importance for systematic development work and production control. Common noise level measurements (dB, dBA, etc. ) do not represent the rattle character in the vehicle interior as revealed during initial investigations. To overcome this problem and to substitute the subjective assessment with a combination of measurable parameters, the psychoacoustic software AVL-EAR was applied to create an Interior Rattle Quality Index. Based on more than 40 different vehicles that have been subjectively assessed by approximately 70 test persons, the index was generated by means of multiple pair comparisons and statistics on measurement data.
Technical Paper

360° vs. 270° vs. 180°: The Difference of Balancing a 2 Cylinder Inline Engine: Design, Simulation, Comparative Measurements

2012-10-23
2012-32-0106
Beside the automotive industry, where 2-cylinder inline engines are catching attention again, twin-cylinder configurations are quite usual in the small engine world. From stationary engines and range-extender use to small motorcycles up to big cruisers and K-Cars this engine architecture is used in many types of applications. Because of very good overall packaging, performance characteristics and not least the possibility of parts-commonality with 4-cylinder engines nearly every motorcycle manufacturer provides an inline twin in its model range. Especially for motorcycle applications where generally the engine is a rigid member of the frame and vibrations can be transferred directly to the rider an appropriate balancing system is required.
Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
X