Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Correlation of Thermal Cycle Tests to Field Usage Profiles for Solder Joints in Automotive Electronics

1998-02-23
980344
This paper reviews the physics-of-failure model for accelerated thermal cycle tests of solder joints associated with various electronics components, summarizes the parameters of the automotive environment, and discusses the methods for developing thermal cycle tests for reliability validation for automotive electronics. The paper proposes an approach to develop the requirements for validation tests based on the customer usage profiles and the desired product life goal. This requirement determines the nominal testing duration based on the equivalent damage generated from the worst-case field applications.
Technical Paper

Simplifying the Possibilities: Properties and Prioritization of Driver Interface Design

1998-10-19
98C033
As technology advances, it is possible to present the driver with more information and communication options than ever before. Intelligent transportation system products will make new and additional demands on the driver's attentional and cognitive abilities. Today, in-vehicle cellular phones and faxes are common, and soon wireless communication with the Internet and various other forms of specialized information will be available to drivers as well. The challenge is to develop a human-machine interface (HMI) that is beneficial yet simple and easy to use as more demands are made on the driver. This paper provides guidance in utilizing human factors properties to ensure simplicity and prioritization of tasks in HMI development
Technical Paper

Reduction of Instrument Panel Manufacturing Cost by Using Design Optimization

1998-09-29
982370
This paper highlights the application of design optimization in reducing product manufacturing cost without compromising product performance. By using a topology optimization method, the manufacturing cost of a clam shell has been reduced by approximately one-third, while maintaining the NVH performance of the steering column that is connected to the instrument panel (IP) through the clam shell. Two different optimization approaches and two different topological weld deployments are investigated. It is found that a fully-deployed seam weld approach with automatic optimization provides the best design results.
Technical Paper

Flexible Fuel and manufacturing dispersion

2008-10-07
2008-36-0310
Back to the non Flex Fuel vehicles, the knock control system was designed and calibrated to absorb differences between engines (mainly compression ratio) and to protect the engine against knock damage (a correction up to 4 degrees BTDC was usually enough). But now, two new variables get in the scene: Flexible Fuel strategy, working from E22 to E100 (all blends in between) and small displacement (1.0 liter) high compression ratio engines. In this new scenario the system must be capable of correcting all spark advance differences, once knock control system acts as a safety feature, protecting the engine even if the fuel learning shows some deviation. In addition to that, we have the compression ratio variation between minimum and maximum limits. Since the engine is small (as well its combustion chamber), each tenth of a millimeter difference during manufacturing process, results in an important final compression ratio variation.
Technical Paper

Lightweight Thermoplastic Composite Throttle Bodies for Car and Truck Applications

2001-03-05
2001-01-1140
The drive to reduce weight, simplify assembly, and cut total system cost in today's vehicles is relentless. Replacing metal systems with thermoplastics has been of considerable interest in the engineering community. The current generations of engineering thermoplastic resins are enabling the use of plastic systems in demanding underhood applications. Technical data and discussion regarding the materials, design, molding, and assembly of lightweight composite throttle bodies will be presented in this paper. Comparisons with machined aluminum throttle housings are drawn to establish a baseline with the throttle body housing component that is most common in production today. Design flexibility and process simplification are some of the approaches highlighted. Much of the technical information provided in the paper applies to both cable driven mechanical throttle bodies as well as electronic throttle bodies under development.
Technical Paper

Throttle Position Sensor Components Assembly Integrated into the Throttle Body Manufacturing Process

2002-11-19
2002-01-3391
In the engine management systems field, there is lack of sensors locally built and available for sale in Brazil. Therefore, many auto parts companies have to import them affecting directly the final products costs (technology know-how/development costs, import taxes and other material handling/custom related costs). This paper was motivated to study an alternative for a simple, cheaper and locally made throttle position sensor. The choose of this part was because the fact that it is one of the most expensive in the throttle body bill of. For developing this new alternative, it was used a tool called value analysis and value engineering. The outcome of this study was a throttle position sensor function integrated to the throttle body manufacturing line with the advantages that 100% components can be locally purchased, improved robustness against humidity and component quantity reduction by 40%. Therefore achieving more value added.
Technical Paper

Software Engineering as Engineering

2000-03-06
2000-01-0713
Software is becoming more prevalent on cars as the number of embedded processors per vehicle increases. Software Engineering used to be considered a “black art” and really was handled that way. It has now been elevated to Engineering status. Software Engineering follows the same principles as any other Engineering practice.
Technical Paper

Seat System Key Life Test

2000-03-06
2000-01-1190
An accelerated seat durability test was developed to identify potential problems in areas with traditionally high warranty cost and customer dissatisfaction: squeak & rattle and mechanism looseness & efforts. The test inputs include temperature, humidity, road vibration, occupant movements, and mechanism cycling. These inputs were combined into a single 14-day test profile that simulates 10 years and 250,000 km. (approximately 150,000 miles) of 95th percentile customer usage. Various components of the seat assembly are tested together as a system. The test was performed on two current production programs. The test produced issues similar to those found in warranty repair data and evaluations of used seats from high-mileage customer-owned vehicles.
Technical Paper

The Effects of Outlet Geometry on Automotive Demister Performance

2000-03-06
2000-01-1277
The established method of clearing a misted car windshield or of maintaining a clear view under misting conditions is through the application of an air supply via jet outlets in the instrument panel. The ability of such arrangements to perform adequately is a function of the prevailing environmental conditions, the vehicle speed, the condition of the demist air source and the geometry and arrangement of the jet outlets. This paper presents experimental data obtained in a purpose built environmental chamber designed to accommodate simple rectangular jets impinging on a misted glass surface. The facility consists of three conditioned air sources applied to a test chamber designed to represent the external, internal and demist air flows. Mist conditions on the glass surface are determined using a novel technique employing a CCD camera acquiring grey scale images which are digitally analysed to generate mist detection, grading and clearing contour data.
Technical Paper

Future Automotive Multimedia Subsystem Interconnect Technologies

2000-11-01
2000-01-C028
For the past decade or so, automotive entertainment subsystem architectures have consisted of a simple Human Machine Interface (HMI), AM-FM tuner, a tape deck, an amplifier and a set of speakers. Over time, as customer demand for more entertainment features increased, automotive entertainment integrators made room for new features by allowing for the vertical integration of analog audio and adding a digital control. The new digital control came to entertainment subsystems via a low-speed multiplexing scheme embedded into the entertainment subsystem components, allowing remote control of these new features. New features were typically incorporated into the entertainment subsystem by independently packaging functional modules. Examples of these modules are cellular telephone, Compact Disc Jockey (CDJ), rear-seat entertainment, Satellite Digital Audio Radio System (S-DARS) receiver, voice and navigation with its associated display and hardware.
Technical Paper

Engineering the 1999 Mercury Cougar Hybrid Instrument Panel

1999-03-01
1999-01-0692
In a joint effort between Ford Motor Company, Visteon Automotive Systems, Textron Automotive Company, and Dow Automotive the 1999 Mercury Cougar instrument panel (IP) was designed and engineered to reduce the weight and overall cost of the IP system. The original IP architecture changed from a traditional design that relied heavily upon the steel structure to absorb and dissipate unbelted occupant energy during frontal collisions to a hybrid design that utilizes both plastic and steel to manage energy. This design approach further reduced IP system weight by 1.88 Kg and yielded significant system cost savings. The hybrid instrument panel architecture in the Cougar utilizes a steel cross car beam coupled to steel energy absorbing brackets and a ductile thermoplastic substrate. The glove box assembly and the driver knee bolster are double shell injection molded structures that incorporate molded-in ribs for added stiffness.
Technical Paper

A Comparison of Different Squeak & Rattle Test Methods for Large Modules and Subsystems

1999-03-01
1999-01-0693
Many engineers today use large, powerful multi-purpose test systems to do squeak & rattle testing of modules and subsystems such as Instrument Panels, Consoles and Seat Assemblies. Such test systems include Multi-Axis Hydraulic Shaker Tables and Electrodynamic Vibration Systems with large head expanders and rigid (or at least stiff) fixtures. These test systems have been successful when used for squeak & rattle test programs, have been validated as approved test methods, and have become the standards of comparison in many labs today. They are, however, expensive and throughput can be limited due to the time needed to unbolt, unload, handle, load, and re-bolt a test item at its many attachment points on the rigid fixture. Furthermore, the capital cost of these Legacy systems can be prohibitive, especially for the smaller supplier, who is being compelled to perform squeak & rattle testing on the products they supply to their customers, the vehicle manufacturers and Tier 1 suppliers.
Technical Paper

A Hybrid System Solution of the Interrupt Latency Compatibility Problem

1999-03-01
1999-01-1099
Microprocessors and microcontrollers are now widely used in automobiles. Microprocessor systems contain sources of interrupt and interrupt service routines, which are software components executed in response to the assertion of an interrupt in hardware. A major problem in designing the software of microprocessor systems is the analytical treatment of interrupt latency. Because multiple interrupt service routines are executed on the same CPU, they compete for the CPU and interfere with each other's latency requirements. Here, interrupt latency is defined as the delay between the assertion of the interrupt in hardware and the start of execution of the associated interrupt service routine. It is estimated that 80% of intermittent bugs in small microprocessor software loads are due to improper treatment of interrupts. Until this work, there is no analytic method for analyzing a particular system to determine if it may violate interrupt latency requirements.
Technical Paper

Application of a Lean Cellular Design Decomposition to Automotive Component Manufacturing System Design

1999-05-10
1999-01-1620
A design framework based on the principles of lean manufacturing and axiomatic design was used as a guideline for designing an automotive component manufacturing system. A brief overview of this design decomposition is given to review its structure and usefulness. Examples are examined to demonstrate how this design framework was applied to the design of a gear manufacturing system. These examples demonstrate the impact that low-level design decisions can have on high-level system objectives and the need for a systems-thinking approach in manufacturing system design. Results are presented to show the estimated performance improvements resulting from the new system design.
Technical Paper

A Journey Towards Technical Competency in Plastics Process Simulation

1999-05-10
1999-01-1640
Plastics manufacturing technology is rapidly changing. The use of process simulation to increase competitiveness has proliferated. Visteon Automotive Systems is committed to developing competent workforce and niche capabilities in plastics processing simulation. In this paper the current capabilities and future development plan for plastic process simulation are discussed. An integrated concurrent engineering process has been developed and implemented to deliver high quality robust plastics automotive products and systems. This paper highlights the technological advancements achieved by Visteon in the field of analytical simulation of common manufacturing processes. In addition, future development initiatives towards the technical competency in plastics manufacturing simulation are discussed throughout the manuscript.
Technical Paper

The Use of Physics-of-Failure Analysis to Predict the Reliability of Semiconductor Devices

1999-03-01
1999-01-0163
The automotive electronics market has seen and will continue to see unimpeded growth due to the substitution of mechanical and electromechanical devices with electrical devices wherever feasible for increased reliability. In addition, automakers are increasingly looking to incorporate advanced electronics technology into their vehicles to satisfy customer demands for more and innovative features. Examples of this are the use of global positioning system (GPS) for directions and roadside assistance and increased integration of the engine and powertrain to provide smoother, more fuel-efficient operation. Despite this growth, however, the automotive electronics market continues to shrink as a percentage of the total market due to the phenomenal growth of the computer and telecommunications markets.
Technical Paper

A New Design of Optical In-Cylinder Pressure Sensor for Automotive Applications

2000-03-06
2000-01-0539
This paper describes a new design of in-cylinder pressure sensor for automotive applications using optical technology. The technology has been applied to a direct injection diesel engine and compared against reference sensors. The rapid expansion in use of fiberoptics in other industries, primarily telecommunications, has supported the development and cost reduction of the technology to the point where it can be considered for automotive applications. Automotive environments are much harsher than standard telecommunications, so the challenge is to develop and package the technology to operate reliably in an engine bay environment. The sensor system consists of a passive sensor head employing a silicon diaphragm responding to the applied pressure and an integrated optical signal processing chip which contains an optical interferometer, light source, and photodiode.
X