Refine Your Search

Topic

Author

Search Results

Technical Paper

Realizing Future Trends in Diesel Engine Development

1997-08-06
972686
Volkswagen is the first automobile manufacturer to supply a passenger car with a direct fuel injection diesel engine to the US market, starting 1996. To meet the stringent US exhaust gas legislation the very successful European 1.9 liter TDI engine has been further developed for the 1996 and 1997 Passat. This TD1 incorporates a number of innovations in advanced diesel technology. Emissions-reducing innovations include: reduced crevice volume higher injection pressures upgraded injection management integrated EGR manifold system EGR cooling diesel catalytic converter This TDI engine configuration is also to be offered in the 1997 Golf and Jetta class and the new Passat in model year 1998. Over the coming years the TDI engine concept will be further optimized by utilizing variations of the above innovations.
Technical Paper

The New Diesel Engine in the New Beetle

1998-08-11
981950
With the introduction of the New Beetle, Volkswagen is offering the next generation of the 1.9l TDI engine. Several evolutionary changes have been made to the TDI concept to further improve its emissions, efficiency and performance. Emissions performance is improved with increased fuel injection pressure, optimized fuel injectors, calibration modifications, EGR cooling and reduced crevice volume in the combustion chamber. Efficiency is improved with new oil pump, vacuum pump and water pump drive systems and the elimination of an auxiliary driveshaft. Performance and efficiency is improved with the addition of a variable geometry turbocharger, which increases torque at lower engine speeds while preserving performance at higher engine speeds. This paper describes the many enhancements found in this latest generation TDI and gives a brief lookout to the future trends in diesel engine development such as a high pressure injection system with unit injectors.
Technical Paper

A PDF-Based Model for Full Cycle Simulation of Direct Injected Engines

2008-06-23
2008-01-1606
In one-dimensional engine simulation programs the simulation of engine performance is mostly done by parameter fitting in order to match simulations with experimental data. The extensive fitting procedure is especially needed for emissions formation - CO, HC, NO, soot - simulations. An alternative to this approach is, to calculate the emissions based on detailed kinetic models. This however demands that the in-cylinder combustion-flow interaction can be modeled accurately, and that the CPU time needed for the model is still acceptable. PDF based stochastic reactor models offer one possible solution. They usually introduce only one (time dependent) parameter - the mixing time - to model the influence of flow on the chemistry. They offer the prediction of the heat release, together with all emission formation, if the optimum mixing time is given.
Technical Paper

The Response of a Closed Loop Controlled Diesel Engine on Fuel Variation

2008-10-06
2008-01-2471
An investigation was conducted to elucidate, how the latest turbocharged, direct injection Volkswagen diesel engine generation with cylinder pressure based closed loop control, to be launched in the US in 2008, reacts to fuel variability. A de-correlated fuels matrix was designed to bracket the range of US market fuel properties, which allowed a clear correlation of individual fuel properties with engine response. The test program consisting of steady state operating points showed that cylinder pressure based closed loop control successfully levels out the influence of fuel ignition quality, showing the effectiveness of this new technology for markets with a wide range of fuel qualities. However, it also showed that within the cetane range tested (39 to 55), despite the constant combustion mid-point, cetane number still has an influence on particulate and gaseous emissions. Volatility and energy density also influence the engine's behavior, but less strongly.
Technical Paper

High Temperature Mg Alloys for Sand and Permanent Mold Casting Applications

2004-03-08
2004-01-0656
The need to reduce weight of large and heavy components used by the automotive and aerospace industries such as engine block, cylinder head cover and helicopter gearbox housing has led to the development of new Mg gravity casting alloys that provide adequate properties and cost effective solution. The new Mg gravity casting alloys are designed for high stressed components that operate at a temperature up to 300°C. These new alloys exhibit excellent mechanical properties and creep resistance in T-6 conditions. The present paper aims at introducing three new Mg gravity casting alloys designated MRI 201S, MRI 202S and MRI 203S, which were recently developed by the Magnesium Research Institute of DSM and VW. Apart from the excellent high temperature performance of these alloys, they provide adequate castability and dimension stability along with good weldability and corrosion resistance.
Technical Paper

Exhaust Gas Aftertreatment of Volkswagen FSI Fuel Stratified Injection Engines

2002-03-04
2002-01-0346
For substantial reduction of fuel consumption of their vehicle fleet, Volkswagen AG has decided to develop spark-ignition engines with direct fuel injection. To launch this new engine concept with stratified lean operation mode while at the same time meeting the stringent EU IV emission standards, it was necessary to develop a suitable exhaust gas aftertreatment system. This was achieved as part of an intensive co-operation between Volkswagen AG and OMG, formerly dmc2 Degussa Metals Catalysts Cerdec AG. The paper describes the demands for exhaust gas aftertreatment due to lean burn operation. In addition the main development steps of the exhaust gas aftertreatment system for Volkswagen FSI engines and catalyst durability over vehicle lifetime are discussed. Focus is laid on the catalyst system design and coating variations. Volkswagen developed a new closed-loop emission control management system which uses NOx-sensor signals for the first time worldwide.
Technical Paper

Multi-Objective Adjoint Optimization of Intake Port Geometry

2012-04-16
2012-01-0905
Meeting the stringent efficiency demands of next generation direct injection engines requires not only optimization of the injection system and combustion chamber, but also an optimal in-cylinder swirling charge flow. This charge motion is largely determined by the shape of the intake port arm geometry and the valve position. In this paper, we outline an extensible methodology implemented in OPENFOAM® for multi-objective geometry optimization based on the continuous adjoint. The adjoint method has a large advantage over traditional optimization approaches in that its cost is not dependent upon the number of parameters being optimized. This characteristic can be used to treat every cell in the computational domain as a tunable parameter - effectively switching cells "on" or "off" depending on whether this action will help improve the objectives.
Technical Paper

Time-Resolved Analysis of Soot Formation and Oxidation in a Direct-Injection Diesel Engine for Different EGR-Rates by an Extinction Method

1995-10-01
952517
The formation of soot during the first phase and the oxidation of soot during the later phase of the combustion in a direct-injection diesel engine have been investigated in detail by an extinction method. The experiments were performed in a 1.9 l near-production high-speed four-cylinder in-line direct-injection diesel engine for passenger cars for different rates of exhaust gas recirculation (EGR) and for different fuels. The measurements result in crank angle resolved and cycle-averaged soot mass concentrations in the piston bowl and the combustion chamber. The results show that with increasing EGR-rates the amount of soot formed is increased only slightly but the amount of soot oxidized during combustion decreases significantly. This is assumed to be the main reason for the increase of soot in the exhaust gas with increasing EGR-rates.
Technical Paper

Vapor/Liquid Visualization with Laser-Induced Exciplex Fluorescence in an SI-Engine for Different Fuel Injection Timings

1996-05-01
961122
Laser-induced exciplex fluorescence has been applied to the mixture formation process in the combustion chamber of an optically-accessible four-cylinder in-line spark-ignition engine in order to distinguish between liquid and vapor fuel distribution during the intake and compression stroke for different injection timings. The naphthalene/N,N,N′N′-tetramethyl p-phenylene diamine (TMPD) exciplex system excited at 308nm with a broadband XeCl excimer laser is used to obtain spectrally-separated, single-shot fluorescence images of the liquid or vapor phase of the fuel. For different timings of the fuel injector this technique is applied to obtain crank-angle-resolved images of the resulting mixture in the combustion chamber. The fluorescence light is detected with an intensified slow-scan CCD-camera equipped with appropriate filters.
Technical Paper

In Cylinder High Speed and Stroboscopic Video Observation of Spray Development in a DI Diesel Engine

1996-05-01
961206
For high-speed imaging a newly developed eight-fold CCD camera, which permits framing rates of up to one million pictures per second, was used to obtain pictures of the injected sprays during the operation of a diesel engine. For the particular case studied here the framing rate was set at 50,000 pictures per second. This rate was sufficient to resolve the temporal development of the sprays in the transparent version of the four-cylinder, in-line, 1.9 litre DI production diesel engine of Volkswagen. The advantage of the camera is that it needs no light pulses for illumination, but can operate with a continuous light source. Each of the CCD chips is arranged around a central eight face reflecting pyramid, which splits the light coming from the camera lens to each CCD chip. The chips can be shuttered freely (asynchronously) at programmable inter-frame spacings thus permitting operation with continuous illumination. In this particular case a 30 Watt halogen lamp was used.
Technical Paper

In-Cylinder Mixture Formation Analysis with Spontaneous Raman Scattering Applied to a Mass-Production SI Engine

1997-02-24
970827
Mixture formation analysis in the combustion chamber of a slightly modified mass-production SI engine with port-fuel injection using nonintrusive laser measurement techniques is presented. Laser Raman scattering and planar laser-induced tracer fluorescence are employed to measure air-fuel ratio and residual gas content of the charge with and without spatial resolution. Single-cycle measurements as well as cycle-averaged measurements are performed. Engine operation parameters like load, speed, injection timing, spark timing, coolant temperature, and mean air-fuel ratio are changed to study whether the effects on mixture formation and engine performance can be resolved by the applied laser spectroscopic techniques. Mixture formation is also analyzed by measurement of the charge composition as a function of crank angle. Clear correlations of the charge composition data and engine operating conditions are seen.
Technical Paper

Quantitative In-Cylinder NO LIF Measurements with a KrF Excimer Laser Applied to a Mass-Production SI Engine Fueled with Isooctane and Regular Gasoline

1997-02-24
970824
Quantitative 1-D spatially-resolved NO LIF measurements in the combustion chamber of a mass-production SI engine with port-fuel injection using a tunable KrF excimer laser are presented. One of the main advantages of this approach is that KrF laser radiation at 248 nm is only slightly absorbed by the in-cylinder gases during engine combustion and therefore it allows measurements at all crank angles. Multispecies detection turned out to be crucial for this approach since it is possible to calculate the in-cylinder temperature from the detected Rayleigh scattering and the simultaneously acquired pressure traces. Additionally, it allows the monitoring of interfering emissions and spectroscopic effects like fluorescence trapping which turned out to take place. Excitation with 248 nm yields LIF emissions at shorter wavelengths than the laser wavelength (at 237 and 226 nm).
Technical Paper

NO Laser-Induced Fluorescence Imaging in the Combustion Chamber of a Spray-Guided Direct-Injection Gasoline Engine

2004-06-08
2004-01-1918
In direct-injection gasoline (GDI) engines with charge stratification, minimizing engine-out nitrogen oxide (NOx) emission is crucial since exhaust-gas aftertreatment tolerates only limited amounts of NOx. Reduced NOx production directly lowers the frequency of energy-inefficient catalyst regeneration cycles. In this paper we investigate NO formation in a realistic GDI engine. Quantitative in-cylinder measurements of NO concentrations are carried out via laser-induced fluorescence imaging with excitation of NO (A-X(0,2) band at 248 nm), and subsequent fluorescence detection at 220-240 nm. Engine modifications were kept to a minimum in order to provide results that are representative of practical operating conditions. Optical access via a sapphire ring enabled identical engine geometry as a production line engine. The engine is operated with commercial gasoline (“Super-Plus”, RON 98).
Technical Paper

Effect of HPDC Parameters on the Performance of Creep Resistant Alloys MRI153M and MRI230D

2005-04-11
2005-01-0334
The growing demand for the use of magnesium alloys in the production of automotive powertrain components led to the development of creep resistant diecasting alloys MRI153M and MRI230D. The present paper addresses the main high-pressure die casting parameters, which significantly affect the performance of components, produced of these new alloys. A systematic study was carried out in order to correlate die-casting parameters to the performance of new alloys. The results obtained clearly indicated that optimization of molten metal and die temperatures, injection profile parameters and lubrication mixtures allowed to improve the die castability and service properties of the new alloys and produce high performance components with intricate geometry. This was manifested by production of several practical demonstrators such as gearboxes, oil pans, oil pumps and crankcases.
Journal Article

The Thermodynamics of Exhaust Gas Condensation

2017-06-29
2017-01-9281
Water vapor is, aside from carbon dioxide, the major fossil fuel combustion by-product. Depending on its concentration in the exhaust gas mixture as well as on the exhaust gas pressure, its condensation temperature can be derived. For typical gasoline engine stoichiometric operating conditions, the water vapor dew point lies at about 53 °C. The exhaust gas mixture does however contain some pollutants coming from the fuel, engine oil, and charge air, which can react with the water vapor and affect the condensation process. For instance, sulfur trioxide present in the exhaust, reacts with water vapor forming sulfuric acid. This acid builds a binary system with water vapor, which presents a dew point often above 100 °C. Exhaust composition after leaving the combustion chamber strongly depends on fuel type, engine concept and operation point. Furthermore, the exhaust undergoes several chemical after treatments.
Technical Paper

3-D CFD Analysis of the Combustion Process in a DI Diesel Engine using a Flamelet Model

2000-03-06
2000-01-0662
A 3-dimensional numerical study has been conducted investigating the combustion process in a VW 1.9l TDI Diesel engine. Simulations were performed modeling the spray injection of a 5-hole Diesel injector in a pressure chamber. A graphical methodology was utilized to match the spray resulting from the widely used Discrete Droplet Spray model to pressure chamber spray images. Satisfactory agreement has been obtained regarding the simulated and experimental spray penetration and cone angles. Thereafter, the combustion process in the engine was simulated. Using engine measurements to initialize the combustion chamber conditions, the compression stroke, the spray injection and the combustion simulation was performed. The novel RTZF two-zone flamelet combustion model was used for the combustion simulation and was tested for partial load operating conditions. An objective analysis of the model is presented including the results of a numerical parameter study.
Technical Paper

Code Coupling, a New Approach to Enhance CFD Analysis of Engines

2000-03-06
2000-01-0660
A new method for the analysis of the gas flow in an internal combustion engine has been developed. It is based on the interactive coupling between commercially available three (STAR-CD) and one dimensional (PROMO) fluid dynamics codes. With this method the detailed transient flow distribution for any engine component of interest can be calculated taking into account the overall gas dynamic interaction with other engine components. The underlying physics and numerics are outlined. A description of the coupling procedure ensuring proper communication between the two computer codes is given. Also addressed is the averaging procedure adopted at the 3D boundaries, including the influence of the 1D/3D interface placement. A first application of this new method is presented, in which the gas flow in a turbo-charged DI-diesel-engine is simulated.
Technical Paper

Experimental Approach to Optimize Catalyst Flow Uniformity

2000-03-06
2000-01-0865
A uniform flow distribution at converter inlet is one of the fundamental requirements to meet high catalytic efficiency. Commonly used tools for optimization of the inlet flow distribution are flow measurements as well as CFD analysis. This paper puts emphasis on the experimental procedures and results. The interaction of flow measurements and CFD is outlined. The exhaust gas flow is transient, compressible and hot, making in-situ flow measurements very complex. On the other hand, to utilize the advantages of flow testing at steady-state and cold conditions the significance of these results has to be verified first. CFD analysis under different boundary conditions prove that - in a first approach - the flow situation can be regarded as a sequence of successive, steady-state situations. Using the Reynolds analogy a formula for the steady-state, cold test mass flow is derived, taking into account the cylinder displacement and the rated speed.
Technical Paper

Vw Lupo, the WorldS First 3-Liter Car

2000-11-01
2000-01-C044
After the success of the 4-cylinder 1.9-liter TDI and SDI direct-injection diesel engines in the Passat, Jetta and Polo classes, a new 3-cylinder TDI has been developed for use in the "Lupo 3L,' a compact car with a fuel consumption of 3 liters per 100 km. A new injection system with unit injectors, together with a fully electronically controlled engine management system featuring drive-by-wire- technology, a turbocharger with variable turbine geometry and a fully automated mechanical gearbox and clutch, for the first time ensures the potential to meet the stringent D4 exhaust emissions level and to achieve excellent fuel economy. The wheel-torque based engine and gearbox management systems optimize engine operation in terms of efficiency and emissions.
X