Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Modeling the Vibrations of and Energy Distributions in Car Body Structures

A general numerical method, the so-called Fourier Spectral Element Method (FSEM), is described for the dynamic analysis of complex systems such as car body structures. In this method, a complex dynamic system is viewed as an assembly of a number of fundamental structural components such as beams, plates, and shells. Over each structural component, the basic solution variables (typically, the displacements) are sought as a continuous function in the form of an improved Fourier series expansion which is mathematically guaranteed to converge absolutely and uniformly over the solution domain of interest. Accordingly, the Fourier coefficients are considered as the generalized coordinates and determined using the powerful Rayleigh-Ritz method. Since this method does not involve any assumption or an introduction of any artificial model parameters, it is broadly applicable to the whole frequency range which is usually divided into low, mid, and high frequency regions.
Technical Paper

A Practical Approach for Cross-Functional Vehicle Body Weight Optimization

The goal of optimization in vehicle design is often blurred by the myriads of requirements belonging to attributes that may not be quite related. If solutions are sought by optimizing attribute performance-related objectives separately starting with a common baseline design configuration as in a traditional design environment, it becomes an arduous task to integrate the potentially conflicting solutions into one satisfactory design. It may be thus more desirable to carry out a combined multi-disciplinary design optimization (MDO) with vehicle weight as an objective function and cross-functional attribute performance targets as constraints. For the particular case of vehicle body structure design, the initial design is likely to be arrived at taking into account styling, packaging and market-driven requirements.
Technical Paper

Use of Truncated Finite Element Modeling for Efficient Design Optimization of an Automotive Front End Structure

The present work is concerned with the objective of multi disciplinary design optimization (MDO) of an automotive front end structure using truncated finite element model. A truncated finite element model of a real world vehicle is developed and its efficacy for use in design optimization is demonstrated. The main goal adopted here is minimizing the weight of the front end structure meeting NVH, durability and crash safety targets. Using the Response Surface Method (RSM) and the Design Of Experiments (DOE) technique, second order polynomial response surfaces are generated for prediction of the structural performance parameters such as lowest modal frequency, fatigue life, and peak deceleration value.
Journal Article

Practical Versus RSM-Based MDO in Vehicle Body Design

Multidisciplinary Design Optimization (MDO) is of great significance in the lean design of vehicles. The present work is concerned with the objective of cross-functional optimization (i.e. MDO) of automotive body. For simplicity, the main goal adopted here is minimizing the weight of the body meeting NVH and crash safety targets. The stated goal can be achieved following either of two different ways: classic response surface method (RSM) and practical MDO methodology espoused recently. Even though RSM seems to be able to find a design point which satisfies the constraints, the problem is with the time associated with running such CAE algorithms that can provide a single optimal solution for multi-disciplinary areas such as NVH and crash safety.
Technical Paper

Lightweighting of an Automotive Front End Structure Considering Frontal NCAP and Pedestrian Lower Leg Impact Safety Requirements

Abstract The present work is concerned with the objective of design optimization of an automotive front end structure meeting both occupant and pedestrian safety requirements. The main goal adopted here is minimizing the mass of the front end structure meeting the safety requirements without sacrificing the performance targets. The front end structure should be sufficiently stiff to protect the occupant by absorbing the impact energy generated during a high speed frontal collision and at the same time it should not induce unduly high impact loads during a low speed pedestrian collision. These two requirements are potentially in conflict with each other; however, there may exist an optimum design solution, in terms of mass of front end structure, that meets both the requirements.
Journal Article

Shell Elements Based Parametric Modeling Method in Frame Robust Design and Optimization

Shell Elements based Parametric Frame Modeling is a powerful CAE tool, which can generate robust frame design concept optimized for NVH and durability quickly when combined with Taguchi Design of Experiments. The scalability of this modeling method includes cross members length/location/section/shape, frame rail segments length/section and kick in/out/up/down angle, and access hole location & size. In the example of the D. O. E. study, more than fifteen parameters were identified and analyzed for frequency and weight. The upper and lower bounds were set for each design parameter based on package and manufacturing constraints. Sixteen Finite Element frame were generated by parametrically updating the base model, which shows this modeling method is comparatively convenient. Sensitivity of these sixteen parameters to the frequency and weight was summarized through statics, so the favorable design alternative can be achieved with the major parameters' combination.
Journal Article

A New Data-Driven Design Method for Thin-Walled Vehicular Structures Under Crash Loading

Abstract A new design methodology based on data mining theory has been proposed and used in the vehicle crashworthiness design. The method allows exploring the big dataset of crash simulations to discover the underlying complicated relationships between response and design variables, and derive design rules based on the structural response to make decisions towards the component design. An S-shaped beam is used as an example to demonstrate the performance of this method. A large amount of simulations are conducted and the results form a big dataset. The dataset is then mined to build a decision tree. Based on the decision tree, the interrelationship among the geometric design variables are revealed, and then the design rules are derived to produce the design cases with good energy absorbing capacity. The accuracy of this method is verified by comparing the data mining model prediction and simulation data.
Technical Paper

Door Slam CAE Method Investigation

Abstract Nowadays, as an irreplaceable means alongside CAD and testing, CAE is more and more widely applied with advanced material modeling and simulation methods continuously being explored, so as to get more accurate result as testing. In vehicle product development process, door slam durability evaluation is an important measurement for body closure structure. So far numerous effort has been taken to develop more mature methods to well define door slam simulation in stress and fatigue life analysis. Overall all methods ever being applied can be summarized as two categories, linear stress based method and nonlinear stress based method. The methodologies, such as inertia relief method, direct transient response solution, or local strain approach, can be included in linear stress based method with linear material properties as symbol in CAE model. In local strain approach, contact surface could be defined in the necessary area with consideration for more realistic load transfer.
Journal Article

A Comparison of the Behaviors of Steel and GFRP Hat-Section Components under Axial Quasi-Static and Impact Loading

Abstract Hat-sections, single and double, made of steel are frequently encountered in automotive body structural components. These components play a significant role in terms of impact energy absorption during vehicle crashes thereby protecting occupants of vehicles from severe injury. However, with the need for higher fuel economy and for compliance to stringent emission norms, auto manufacturers are looking for means to continually reduce vehicle body weight either by employing lighter materials like aluminum and fiber-reinforced plastics, or by using higher strength steel with reduced gages, or by combinations of these approaches. Unlike steel hat-sections which have been extensively reported in published literature, the axial crushing behavior of hat-sections made of fiber-reinforced composites may not have been adequately probed.
Technical Paper

Effect of Vehicle Front End Profiles Leading to Pedestrian Secondary Head Impact to Ground

Most studies of pedestrian injuries focus on reducing traumatic injuries due to the primary impact between the vehicle and the pedestrian. However, based on the Pedestrian Crash Data Study (PCDS), some researchers concluded that one of the leading causes of head injury for pedestrian crashes can be attributed to the secondary impact, defined as the impact of the pedestrian with the ground after the primary impact of the pedestrian with the vehicle. The purpose of this study is to understand if different vehicle front-end profiles can affect the risk of pedestrian secondary head impact with the ground and thus help in reducing the risk of head injury during secondary head impact with ground. Pedestrian responses were studied using several front-end profiles based off a mid-size vehicle and a SUV that have been validated previously along with several MADYMO pedestrian models.
Technical Paper

Behavior of Adhesively Bonded Steel Double Hat-Section Components Under Lateral Impact Loading

Recent experimental studies on the behavior of adhesively-bonded steel double-hat section components under axial impact loading have produced encouraging results in terms of load-displacement response and energy absorption when compared to traditional spot-welded hat sections. However, it is extremely difficult to come across any published work on the behavior of such components under transverse impact loading keeping in mind applications such as automotive body structures subject to lateral/side impact. In the present work, experimental lateral impact studies have been carried out on adhesively-bonded double-hat section components and the performance of such components has been compared against their conventional spot-welded and hybrid counterparts. It is clarified that hybrid components in the present context refer to adhesively-bonded hat sections with a few spot welds only aimed at preventing catastrophic flange separations.