Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

“Fair” Comparison of Powertrain Configurations for Plug-In Hybrid Operation Using Global Optimization

2009-04-20
2009-01-1334
Plug-in Hybrid Electric Vehicles (PHEVs) use electric energy from the grid rather than fuel energy for most short trips, therefore drastically reducing fuel consumption. Different configurations can be used for PHEVs. In this study, the parallel pre-transmission, series, and power-split configurations were compared by using global optimization. The latter allows a fair comparison among different powertrains. Each vehicle was operated optimally to ensure that the results would not be biased by non-optimally tuned or designed controllers. All vehicles were sized to have a similar all-electric range (AER), performance, and towing capacity. Several driving cycles and distances were used. The advantages of each powertrain are discussed.
Technical Paper

Control Analysis and Model Validation for BMW i3 Range Extender

2017-03-28
2017-01-1152
The control analysis and model validation of a 2014 BMW i3-Range Extender (REX) was conducted based on the test data in this study. The vehicle testing was performed on a chassis dynamometer set within a thermal chamber at the Advanced Powertrain Research Facility at Argonne National Laboratory. The BMW i3-REX is a series-type plug-in hybrid range extended vehicle which consists of a 0.65L in-line 2-cylinder range-extending engine with a 26.6kW generator, 125kW permanent magnet synchronous AC motor, and 18.8kWh lithium-ion battery. Both component and vehicle model including thermal aspects, were developed based on the test data. For example, the engine fuel consumption rate, battery resistance, or cabin HVAC energy consumption are affected by the temperature. Second, the vehicle-level control strategy was analyzed at normal temperature conditions (22°C ambient temperature). The analysis focuses on the engine on/off strategy, battery SOC balancing, and engine operating conditions.
Technical Paper

Validating Heavy-Duty Vehicle Models Using a Platooning Scenario

2019-04-02
2019-01-1248
Connectivity and automation provide the potential to use information about the environment and future driving to minimize energy consumption. Aerodynamic drag can also be reduced by close-gap platooning using information from vehicle-to-vehicle communications. In order to achieve these goals, the designers of control strategies need to simulate a wide range of driving situations in which vehicles interact with other vehicles and the infrastructure in a closed-loop fashion. RoadRunner is a new model-based system engineering platform based on Autonomie software, which can collectively provide the necessary tools to predict energy consumption for various driving decisions and scenarios such as car-following, free-flow, or eco-approach driving, and thereby can help in developing control algorithms.
Technical Paper

Fuel Efficient Speed Optimization for Real-World Highway Cruising

2018-04-03
2018-01-0589
This paper introduces an eco-driving highway cruising algorithm based on optimal control theory that is applied to a conventionally-powered connected and automated vehicle. Thanks to connectivity to the cloud and/or to infrastructure, speed limit and slope along the future route can be known with accuracy. This can in turn be used to compute the control variable trajectory that will minimize energy consumption without significantly impacting travel time. Automated driving is necessary to the implementation of this concept, because the chosen control variables (e.g., torque and gear) impact vehicle speed. An optimal control problem is built up where quadratic models are used for the powertrain. The optimization is solved by applying Pontryagin’s minimum principle, which reduces the problem to the minimization of a cost function with parameters called co-states.
Technical Paper

A Modeling Framework for Connectivity and Automation Co-simulation

2018-04-03
2018-01-0607
This paper presents a unified modeling environment to simulate vehicle driving and powertrain operations within the context of the surrounding environment, including interactions between vehicles and between vehicles and the road. The goal of this framework is to facilitate the analysis of the energy impacts of vehicle connectivity and automation, as well as the development of eco-driving algorithms. Connectivity and automation indeed provide the potential to use information about the environment and future driving to minimize energy consumption. To achieve this goal, the designers of eco-driving control strategies need to simulate a wide range of driving situations, including the interactions with other vehicles and the infrastructure in a closed-loop fashion.
Journal Article

Control Analysis under Different Driving Conditions for Peugeot 3008 Hybrid 4

2014-04-01
2014-01-1818
This paper includes analysis results for the control strategy of the Peugeot 3008 Hybrid4, a diesel-electric hybrid vehicle, under different thermal conditions. The analysis was based on testing results obtained under the different thermal conditions in the Advanced Powertrain Research Facility (APRF) at Argonne National Laboratory (ANL). The objectives were to determine the principal concepts of the control strategy for the vehicle at a supervisory level, and to understand the overall system behavior based on the concepts. Control principles for complex systems are generally designed to maximize the performance, and it is a serious challenge to determine these principles without detailed information about the systems. By analyzing the test results obtained in various driving conditions with the Peugeot 3008 Hybrid4, we tried to figure out the supervisory control strategy.
Technical Paper

Development and Validation of the Ford Focus Battery Electric Vehicle Model

2014-04-01
2014-01-1809
This paper presents the vehicle model development and validation process for the Ford Focus battery electric vehicles (BEVs) using Autonomie and test results from Advanced Powertrain Research Facility in Argonne National Laboratory. The parameters or characteristic values for the important components such as the electric machine and battery pack system are estimated through analyzing the test data of the multi cycle test (MCT) procedure under the standard ambient condition. A novel process was used to import vehicle test data into Autonomie. Through this process, a complete vehicle model of the Ford Focus BEV is developed and validated under ambient temperature for different drive cycles (UDDS, HWFET, US06 and Steady-State). The simulation results of the developed vehicle model show coincident results with the test data within 0.5% ∼ 4% discrepancies for electrical consumption.
Technical Paper

Impact of Connectivity and Automation on Vehicle Energy Use

2016-04-05
2016-01-0152
Connectivity and automation are increasingly being developed for cars and trucks, aiming to provide better safety and better driving experience. As these technologies mature and reach higher adoption rates, they will also have an impact on the energy consumption: Connected and Automated Vehicles (CAVs) may drive more smoothly, stop less often, and move at faster speeds, thanks to overall improvements to traffic flows. These potential impacts are not well studied, and any existing studies tend to focus solely on conventional engine-powered cars, leaving aside electrified vehicles such as Hybrid Electric Vehicles (HEVs) and Battery Electric Vehicles (BEVs). This work intends to address this issue by analyzing the energy impact of various CAV scenarios on different types of electric vehicles using high-fidelity models. The vehicles-all midsize, one HEV, one BEV, and a conventional-are modeled in Autonomie, a high-fidelity, forward-looking vehicle simulation tool.
X