Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Simulation-Based Cold-Start Control Strategy for a Diesel Engine with Common Rail Fuel System at Different Ambient Temperatures

2007-04-16
2007-01-0933
A new tool has been used to arrive at appropriate split injection strategy for reducing the cranking period during the cold start of a multi-cylinder engine at decreasing ambient temperatures. The concept behind this tool is that the combination of different injection parameters that produce the highest IMEP should be able to improve the cold startability of the diesel engine. In this work the following injection parameters were considered: 1) injection timing, 2) split injection fraction, 3) dwell time and 4) total fuel mass injected per cycle. A commercial engine cyclic simulation code has been modified for diesel engine cycle simulation at lower ambient temperatures. The code was used to develop IMEP control maps. The maps were used to identify the parameters that would give the best IMEP. The strategies that have been identified have been validated experimentally in a multi-cylinder diesel engine equipped with a common rail fuel injection system.
Technical Paper

Lower Temperature Limits for Cold Starting of Diesel Engine with a Common Rail Fuel Injection System

2007-04-16
2007-01-0934
One of the most challenging problems in diesel engines is to reduce unburned HC emissions that appear as (white smoke) during cold starting. In this paper the research is carried out on a 4-cylinder diesel engine with a common rail fuel injection system, which is able to deliver multiple injections during cold start. The causes of combustion failure at lower temperature limits are investigated theoretically by considering the rate of heat release. The results of this clearly indicate that in addition to low cranking engine speed, heat transfer and blow-by losses at lower ambient temperatures, fuel injection events would contribute to the failure of combustion. Also, combustion failure takes place when the compression temperature is lower than some critical value. Based on these results, split-main injection strategy was applied during engine cold starting and validated by experiments in a cold room at lower ambient temperatures.
Technical Paper

Effect of Injection Pressure and Swirl Motion on Diesel Engine-out Emissions in Conventional and Advanced Combustion Regimes

2006-04-03
2006-01-0076
The fuel injection pressure and the swirl motion have a great impact on combustion in small bore HSDI diesel engines running on the conventional or advanced combustion concepts. This paper examines the effects of injection pressure and the swirl motion on engine-out emissions over a wide range of EGR rates. Experiments were conducted on a single cylinder, 4-valve, direct injection diesel engine equipped with a common rail injection system. The pressures and temperatures in the inlet and exhaust surge tanks were adjusted to simulate turbocharged engine conditions. The load and speed of the engine were typical to highway cruising operation of a light duty vehicle. The experiments covered a wide range of injection pressures, swirl ratios and injection timings. Engine-out emission measurements included hydrocarbons, carbon monoxide, smoke (in Bosch Smoke Units, BSU) and NOx.
Technical Paper

Experimental Investigation of Single and Two-Stage Ignition in a Diesel Engine

2008-04-14
2008-01-1071
This paper presents an experimental investigation conducted to determine the parameters that control the behavior of autoignition in a small-bore, single-cylinder, optically-accessible diesel engine. Depending on operating conditions, three types of autoignition are observed: a single ignition, a two-stage process where a low temperature heat release (LTHR) or cool flame precedes the main premixed combustion, and a two-stage process where the LTHR or cool flame is separated from the main heat release by an apparent negative temperature coefficient (NTC) region. Experiments were conducted using commercial grade low-sulfur diesel fuel with a common-rail injection system. An intensified CCD camera was used for ultraviolet imaging and spectroscopy of chemiluminescent autoignition reactions under various operating conditions including fuel injection pressures, engine temperatures and equivalence ratios.
Technical Paper

Effect of Different Biodiesel Blends on Autoignition, Combustion, Performance and Engine-Out Emissions in a Single Cylinder HSDI Diesel Engine

2009-04-20
2009-01-0489
The effects of different blends of Soybean Methyl Ester (biodiesel) and ultra low sulfur diesel (ULSD) fuel: B-00 (ULSD), B-20, B-40, B-60, B-80 and B-100 (biodiesel); on autoignition, combustion, performance, and engine out emissions of different species including particulate matter (PM) in the exhaust, were investigated in a single-cylinder, high speed direct injection (HSDI) diesel engine equipped with a common rail injection system. The engine was operated at 1500 rpm under simulated turbocharged conditions at 5 bar IMEP load with varied injection pressures at a medium swirl of 3.77 w ithout EGR. Analysis of test results was done to determine the role of biodiesel percentage in the fuel blend on the basic thermodynamic and combustion processes under fuel injection pressures ranging from 600 bar to 1200 bar.
Technical Paper

Optical and Numerical Investigation of Pre-Injection Reactions and Their Effect on the Starting of a Diesel Engine

2009-04-20
2009-01-0648
Ultraviolet chemiluminescence has been observed in a diesel engine cyclinder during compression, but prior to fuel injection under engine starting conditions. During a portion of the warm-up sequence, the intensity of this emission exhibits a strong correlation to the phasing of the subsequent combustion. Engine exhaust measurements taken from a continuously misfiring, motored engine confirm the generation of formaldehyde (HCHO) in such processes. Fractions of this compound are expected to be recycled as residual to participate in the following combustion cycle. Spectral measurements taken during the compression period prior to fuel injection match the features of Emeleus' cool flame HCHO bands that have been observed during low temperature heat release reactions occurring in lean HCCI combustion. That the signal from the OH* bands is weak implies a buildup of HCHO during compression.
Technical Paper

Combustion Visualization of DI Diesel Spray Combustion inside a Small-Bore Cylinder under different EGR and Swirl Ratios

2001-05-07
2001-01-2005
An experimental setup using rapid compression machine to provide excellent optical access to visualize simulated high-speed small-bore direct injection diesel engine combustion processes is described. Typical combustion visualization results of diesel spray combustion under different EGR, swirl, and injection pressure and nozzle conditions are presented. Different swirl intensities are achieved using an air nozzle with variable orientations and a check valve to connect the compression chamber and the combustion chamber. Different EGR ratios are achieved by pre-injection of diesel fuel prior to the main observation sequence. Clear visualization of the high-pressure fuel injection, ignition, combustion and spray/wall/swirl interactions is obtained. The injection system is a high-pressure common-rail system with either a VCO or a mini-sac nozzle. High-speed movies up to 35,000 frame-per-second are taken using a framing drum camera to record the combustion events.
Journal Article

Effect of Swirl Ratio and Wall Temperature on Pre-lnjection Chemiluminescence During Starting of an Optical Diesel Engine

2009-11-02
2009-01-2712
Fuel wall impingement commonly occurs in small-bore diesel engines. Particularly during engine starting, when wall temperatures are low, the evaporation rate of fuel film remaining from previous cycles plays a significant role in the autoignition process that is not fully understood. Pre-injection chemiluminescence (PIC), resulting from low-temperature oxidation of evaporating fuel film and residual gases, was measured over 3200 μsec intervals at the end of the compression strokes, but prior to fuel injection during a series of starting sequences in an optical diesel engine. These experiments were conducted to determine the effect of this parameter on combustion phasing and were conducted at initial engine temperatures of 30, 40, 50 and 60°C, at swirl ratios of 2.0 and 4.5 at 1000 RPM. PIC was determined to increase and be highly correlated with combustion phasing during initial cycles of the starting sequence.
Technical Paper

Effect of Nozzle hole Geometry on a HSDI Diesel Engine-Out Emissions

2003-03-03
2003-01-0704
The combustion and emission characteristics of a high speed, small-bore, direct injection, single cylinder, diesel engine are investigated using two different nozzles, a 430-VCO (0.171mm) and a 320 Mini sac (0.131mm). The experiments were conducted at conditions that represent a key point in the operation of a diesel engine in an electric hybrid vehicle (1500 rpm and light load condition). The experiments covered fuel injection pressures ranging from 400 to 1000 bar and EGR ratios ranging from 0 to 50%. The effects of nozzle hole geometry on the ignition delay (ID), apparent rate of energy release (ARER, ARHR), NOx, Bosch smoke unit (BSU), CO and hydrocarbons are investigated.
Technical Paper

Effect of Cycle-to-Cycle Variation in the Injection Pressure in a Common Rail Diesel Injection System on Engine Performance

2003-03-03
2003-01-0699
The performance of the Common Rail diesel injection system (CRS) is investigated experimentally in a single cylinder engine and a test rig to determine the cycle-to-cycle variation in the injection pressure and its effects on the needle opening and rate of fuel delivery. The engine used is a single cylinder, simulated-turbocharged diesel engine. Data for the different injection and performance parameters are collected under steady state conditions for 35 consecutive cycles. Furthermore, a mathematical model has been developed to calculate the instantaneous fuel delivery rate at various injection pressures. The experimental results supported with the model computations indicated the presence of cycle-to-cycle variations in the fuel injection pressure and needle lift. The variations in the peak-cylinder gas pressure, rate of heat release, cylinder gas temperature and IMEP are correlated with the variation in the injection rate.
Technical Paper

Simulation of Diesel Engines Cold-Start

2003-03-03
2003-01-0080
Diesel engine cold-start problems include long cranking periods, hesitation and white smoke emissions. A better understanding of these problems is essential to improve diesel engine cold-start. In this study computer simulation model is developed for the steady state and transient cold starting processes in a single-cylinder naturally aspirated direct injection diesel engine. The model is verified experimentally and utilized to determine the key parameters that affect the cranking period and combustion instability after the engine starts. The behavior of the fuel spray before and after it impinges on the combustion chamber walls was analyzed in each cycle during the cold-start operation. The analysis indicated that the accumulated fuel in combustion chamber has a major impact on engine cold starting through increasing engine compression pressure and temperature and increasing fuel vapor concentration in the combustion chamber during the ignition delay period.
X