Refine Your Search

Topic

Search Results

Technical Paper

Parallel Thermal Management System of the Water Medium Retarder

2018-04-03
2018-01-0777
The thermal management system of the water medium retarder using engine coolant (water and ethylene glycol) as transmission medium, omits oil-water heat exchanger in the structure. When the hydraulic retarder is operated, the valve is connected with the retarder and water pump, and then the engine coolant enters the working chamber. The kinetic energy of the vehicle is converted into internal energy of the coolant, and the heat is discharged to the external environment through the engine thermal management system. The braking torque of the water medium hydraulic retarder is determined by the water medium flow rate in the working chamber. The smaller the valve opening degree, the greater the braking torque and the faster the heating transmission fluid. Small valve opening is not conducive to the loss of heat. It will affect the normal working of the engine and hydraulic retarder.
Technical Paper

Intelligent Control of Metal-belt CVT Based on Fuzzy Logic

2009-04-20
2009-01-1535
Operating level of a metal-belt CVT mainly rest with the ECU. Conventional control strategies which were obtained from tests or PID controller can not correspond to the driver’s intention or provide various driving environments. It is considered that control targets of metal-belt CVT could be distinguished by a speed ratio, line pressure and starting element till now. Running performance of automobile with a CVT mainly depends on the speed ratio control. An adapted fuzzy logic ratio control algorithm is suggested and optimized. A throttle position and its changing rate will be inputs of the FLC to meet the driver’s intention and make the intelligent control come true. A fuzzy logic line pressure control algorithm is also suggested and optimized corresponding to the complicated high line pressure control.
Technical Paper

Heavy Truck Driveline Components Modeling and Thermal Analyzing

2009-10-06
2009-01-2905
In heavy truck driveline system, the components often include clutch, transmission, transfer case, drive shaft, etc. A fluid torque converter could be equipped in front of the transmission in order to improve the starting performance. Meanwhile, a hydraulic retarder could be introduced for auxiliary braking so as to adapt the truck to the brake on long downgrade in mountainous regions. Thus, the driveline heat load would have a notable increase. Both the fluid torque converter and the hydraulic retarder would produce a large quantity of heat, and a special cooling system is needed for adjusting the transmission fluid temperature with which the gains are potentially very large [1]. The heat load for driveline is often calculated based on empirical formula. For the heavy truck, however, if the heat value is underestimated, driveline components would suffer from overheated damage.
Technical Paper

3-D Numerical Simulation of Transient Heat Transfer among Multi-Component Coupling System in Internal Combustion Chamber

2008-06-23
2008-01-1818
A 3-D numerical analysis model of transient heat transfer among the multi-component coupling system in combustion chamber of internal combustion engine has been developed successfully in the paper. The model includes almost all solid components in combustion chamber, such as piston assembly, cylinder liner, cylinder head gasket, cylinder head, intake valves and exhaust valves, etc. With two different coupling heat transfer modes, one is the lubricant film heat conduction between two moving components, another is the contact heat conduction between two immovable solid components, and with the direct coupled-field analysis method of FEM, the heat transfer relation among the components is established. The simulation result dedicates the transient heat transfer process among the components such as moving piston assembly and cylinder liner, moving valves and cylinder head. The effect of cylinder head gasket on heat transfer among the components is also studied.
Technical Paper

Study on Variable Combustion Chamber (VCC) Engines

2012-09-10
2012-01-1607
A patented VCC (variable combustion chamber) piston mechanism is presented, by which excess in-cylinder pressure would be able to be limited effectively based on each working cycle while a spark-ignition engine running with higher CR (compression ratio) of 12.0:1. A conventional engine can be converted to a VCC engine just by replacing its typical pistons with VCC pistons. Besides the benefits that VCR (Variable Compression Ratio) has been still pursued so far, there would be other advantages for VCC engine, such as excellent fuel economy at each load not only at light loads, and the improvement of cycle-by-cycle variation of in-cylinder pressure, and high reliability with simple structure. The innovative design of VCC piston is introduced. The main design features of VCC piston are a VCC mechanism assembled between the piston crown and the piston skirt, and a special reset cam assembled at the wrist-pin end of the connecting rod.
Technical Paper

The Modeling and Performance Analysis of the Retarder Thermal Management System

2012-09-24
2012-01-1929
In order to obtain the comprehensive evaluation of thermal management system for the retarder, the complete driveline thermal management model is built. The characteristic parameters for the thermal management system are determined and the hydromechanical characteristics for the retarder are fixed by the rig test. On the basis of the same whole vehicle driving cycle, comparing to the traditional mechanical-drive system, the independent-drive system makes the working temperature of the heat source more stable. Meanwhile the parasitic power caused by the radiator fan is decreased markedly on the condition that the heat reject requirement of the heat source is satisfied.
Technical Paper

Application of Wavelet Analysis in Truck Cab Vibration Signal Processing

2012-09-24
2012-01-2011
The basic principle of wavelet transform is presented and the method of wavelet theory is used in vibration signal analysis of vehicle in this paper. The vibration signals which generated in the locations such as cab floor, engine, transmission, band spring and frame under the usual work condition are measured by the vibration test system. The vibration signals are decomposed with the principle of wavelet decomposition at level six, and eigenvectors of signal energy are gained. According to the correlation coefficient of eigenvectors of signal energy distribution, two signals correlativity is determined. It could be an effective method that identificate the main vibration source.
Technical Paper

Vacuum Cleaning Vehicle Dust Subsidence System Design

2014-04-01
2014-01-0750
Vacuum cleaning vehicle is the necessary equipment for the Municipal Sanitation Department to keep the road surface clean and the dust subsidence system is the heart unit for the proper function of the cleaning vehicle. The reasonable design of this system could increase the load capacity of the vehicle and be convenient for the garbage collecting and dumping. Meanwhile, the engine power could be relatively reduced and the influence on the environment duo to the dusty air in the outlet could be also effectively improved. In the study, the gravity dedusting principle is used firstly for structure design to reduce the flow rate of dust particles inside the lower part of the dust subsidence system. The ruleless collision loss among dust particles is reduced and thereby the fan power is saved. By means of a reasonable separated chamber design and the use of inertia baffle, the sort management for dust particles is developed and the work stress of the export filter is released observably.
Technical Paper

Body Load Identification for BEV Based on Power Spectrum Decomposition under Road Excitation

2014-06-30
2014-01-2044
As motor assembly of Battery Electric Vehicle (BEV) replaces engine system of Internal Combustion Engine (ICE) vehicle, interior structure-borne noise induced by road random excitation becomes more prominent under middle and high speed. The research is focused on central driving type BEV. In order to improve interior noise in middle and low frequency range, dynamic load of BEV body must be identified. Consequently the structural noise induced by road excitation is conducted. The limitations of common identification method for dynamic body load are analyzed. The applied several identification methods are proposed for deterministic dynamic load such as engine or motor. Random dynamic load generated by road excitation is different from deterministic dynamic load. The deterministic load identification method cannot be applied to the random load directly. An identification method of dynamic body load for BEV is presented based on power spectrum decomposition.
Technical Paper

Analysis and Modeling of Transmission Efficiency of Vehicle Driveline

2014-04-01
2014-01-1779
This work analyzes the transmission efficiency of vehicle driveline including the gearbox, universal transmission and differential. Based on the structure of transmission, mathematic models are built to analyze transmission's characteristics. However, an experiment reveals the limitation of this method. Then, the paper statistically analyzes the experimental data and mainly analyzes the influencing factors. Then Neural Network is used to build the efficiency model. A method called “filling data and gradually extrapolating” is used when building neural network model. Finally, the neural network model is used in the simulation of fuel consumption. The conclusion is Neural Network model can imitate the transmission efficiency of vehicle driveline efficiently, but its internal structure is not clear so other modeling methods are needed to be found.
Technical Paper

Characterization Spray and Combustion Processes of Acetone-Butanol-Ethanol (ABE) in a Constant Volume Chamber

2015-04-14
2015-01-0919
Recent research has shown that butanol, instead of ethanol, has the potential of introducing a more suitable blend in diesel engines. This is because butanol has properties similar to current transportation fuels in comparison to ethanol. However, the main downside is the high cost of the butanol production process. Acetone-butanol-ethanol (ABE) is an intermediate product of the fermentation process of butanol production. By eliminating the separation and purification processes, using ABE directly in diesel blends has the potential of greatly decreasing the overall cost for fuel production. This could lead to a vast commercial use of ABE-diesel blends on the market. Much research has been done in the past five years concerning spray and combustion processes of both neat ABE and ABE-diesel mixtures. Additionally, different compositions of ABE mixtures had been characterized with a similar experimental approach.
Technical Paper

Research and Simulation of Electro-Hydraulic Braking System Based on Integrated Master Cylinder

2015-04-14
2015-01-0159
Analogous to a vacuum boosted system, Electro-Hydraulic Braking System (EHB) is free from engine vacuum and supplies a braking force proportional to driver input. The independence of engine vacuum makes it especially suitable to be used in electric vehicles (EVs) and hybrid electric vehicles (HEVs). As a key component of EHB, master cylinder is driven by the pump rather than the vacuum booster. Even if the pump fails, the cylinder can also build proper pressure. Meanwhile, in order to maintain the pedal feeling, a pedal stroke simulator is applied in the system. In this paper, aiming at decreasing the size and cost of master cylinder and providing an ideal pedal feeling without compromise of performance, a new integrated master cylinder of EHB system is designed including two parts: master cylinder and pedal stroke simulator. The key components of the integrated master cylinder are motor pump, solenoid valves and composite springs.
Technical Paper

Experimental and Numerical Investigation of Soot Mechanism of Acetone-Butanol-Ethanol (ABE) with Various Oxygen Concentrations

2015-04-14
2015-01-0389
A multi-step acetone-butanol-ethanol (ABE) phenomenological soot model was proposed and implemented into KIVA-3V Release 2 code. Experiments were conducted in an optical constant volume combustion chamber to investigate the combustion and soot emission characteristics under the conditions of 1000 K initial temperature with various oxygen concentrations (21%, 16%, 11%). Multi-dimensional computational fluid dynamics (CFD) simulations were conducted in conjunction under the same operation conditions. The predicted soot mass traces showed good agreement with experimental data. As ambient oxygen decreased from 21% to 11%, ignition delay retarded and the distribution of temperature became more homogenous. Compared to 21% ambient oxygen, the peak value of total soot mass at 16% oxygen concentration was higher due to the suppressed soot oxidation mechanism.
Technical Paper

A Reduced Chemical Kinetic Mechanism of Toluene Reference Fuel (toluene/n-heptane) for Diesel Engine Combustion Simulations

2015-04-14
2015-01-0387
In the present study, we developed a reduced chemical reaction mechanism consisted of n-heptane and toluene as surrogate fuel species for diesel engine combustion simulation. The LLNL detailed chemical kinetic mechanism for n-heptane was chosen as the base mechanism. A multi-technique reduction methodology was applied, which included directed relation graph with error propagation and sensitivity analysis (DRGEPSA), non-essential reaction elimination, reaction pathway analysis, sensitivity analysis, and reaction rate adjustment. In a similar fashion, a reduced toluene mechanism was also developed. The reduced n-heptane and toluene mechanisms were then combined to form a diesel surrogate mechanism, which consisted of 158 species and 468 reactions. Extensive validations were conducted for the present mechanism with experimental ignition delay in shock tubes and laminar flame speeds under various pressures, temperatures and equivalence ratios related to engine conditions.
Technical Paper

Integrated Cooling Evaporation System for the Hydraulic Retarder

2015-04-14
2015-01-1612
The hydraulic retarder is a significant auxiliary braking device [1] for the heavy duty vehicle. Traditionally, cooling circulatory system of the hydraulic retarder was coupled with the engine cooling system [2], and the thermal energy of the transmission medium would be cooled by the engine radiator ultimately. For this scheme, radiator's spare heat removal capacity could be fully utilized whereas the cooling system is very complicated and is hard to maintain. Furthermore, the corresponding of thermal management system lags behind the power change of the retarder. In this research, integrated cooling evaporation system is developed for the hydraulic retarder, which makes the cooling water contact with the transmission medium through the stator wall, so that it can rapidly response to the thermal variation of the retarder, keep the stability of the oil temperature and meanwhile reduce the risk of cooling medium leakage.
Technical Paper

The Organic Medium Physical State Analysis for Engine Exhaust Thermal Recovery

2015-04-14
2015-01-1610
The Organic Rankine Cycle System is an effective approach for recovering the engine exhaust thermal energy. The physical characteristic of the Rankine fluid is the key factor for the capacity and the stability of the expander power output. In the research, the influences of the evaporator organic medium state and flow rate on the expander power output are fully analyzed for the sufficient utilization of the waste thermal energy. Firstly, the exhaust characteristics of the diesel engine were processed by the data of the bench test. Then, the integral mathematical model of the Organic Rankine Cycle was built. Based on the comparison for the 2-zone and 3-zone evaporator, the influence for expander output are analyzed especially emphasis on the factors of engine working condition, the flow rate, temperature and state of Rankine fluid.
Technical Paper

Thermoelectric Module Temperature Stability Control for the Vehicle Engine Exhaust Heat Recovery

2015-04-14
2015-01-0350
The vehicle engine exhaust wastes heat. For the conventional scheme, the hot-end of the thermoelectric module is connected with the exhaust pipe, while the cold-end is cooled through the vehicle engine cooling cycle. The variation of vehicle engine operating conditions brings the instability of the hot-end temperature, which affects the power generation performance of thermoelectric materials and increases the damage risk to the thermoelectric materials caused by the high temperature. This research adopts the heat transfer oil circulation as the intermediate fluid to absorb the dynamic heat flux of the vehicle engine exhaust so as to release the heat steadily to the hot-end of the thermoelectric module. The thermal characteristics of the target diesel vehicle engine exhaust gas are evaluated based on the experimental data firstly.
Technical Paper

A Two-Stage Pressure Boost Device for Relieving Turbocharger Delay Effect by Means of Utilizing Engine Waste Heat

2015-09-29
2015-01-2790
Turbochargers can improve vehicle dynamic performance and fuel economy and are applied widely nowadays. Due to the existence of turbocharger delay effect, acceleration delay and insufficient combustion are its disadvantages. By collecting high pressure gas which generates from the inertia of the turbine in the intake passage when the vehicle slows down, the gas can be supplied for the shortage while the vehicle is accelerating, which can reduce turbocharger delay effect directly. However, turbocharger delay effect changes a little at high speed and low speed which is subjected to the air inflation and short air-release time. This paper adds a set of pressure booster device on the existing inflating-deflating device, whose thermal energy comes from the compressed air and lubricating oil, to facilitate pressure increasing in inflating-deflating device and help the chamber change sooner, which avails to relieve the delay effect.
Technical Paper

A Modeling Study of the Effects of Butanol Addition on Aromatic Species in Premixed Butane Flames

2016-04-05
2016-01-0574
The motivation of the present work was to understand the mechanism by which alcohols produce less aromatic species in their combustion process than an equal amount of hydrocarbon with similar molecular structure does. Due to its numerous advantages over short-chain alcohols, butanol has been considered very promising in soot reduction. Excluding the influence of spray, vaporization and mixing process in engine cases, an adiabatic constant-pressure reactor model was applied to investigate the effect of butanol additives on aromatic species, which are known to be soot precursors, in fuel-rich butane flames. To keep the carbon flux constant, 5% and 10% oxygen by mass of the fuel were added to butane using butanol additive, respectively. Based on the soot reduction effects proposed in literature, effects on temperature, key radical concentrations and the carbon removal from the pathway to aromatic species were considered to identify the major mechanism of reduction in aromatic species.
Technical Paper

Experimental Study on Performance and Emission of Acetone-Ethanol and Gasoline Blends in a PFI Spark Ignition Engine

2016-04-05
2016-01-0833
To face the challenges of fossil fuel shortage and air pollution problems, there is growing interest in the potential usage of alternative fuels such as bio-ethanol and bio-butanol in internal combustion engines. The literature shows that the acetone in the Acetone-Butanol-Ethanol (ABE) blends plays an important part in improving the combustion performance and emissions, owing to its higher volatility. In order to study the effects of acetone addition into commercial gasoline, this study focuses on the differences in combustion, performance and emission characteristics of a port-injection spark-ignition engine fueled with pure gasoline (G100), ethanol-containing gasoline (E30) and acetone-ethanol-gasoline blends (AE30 at A:E volumetric ratio of 3:1). The tests were conducted at 1200RPM with the default calibration (for gasoline), at 3 bar and 5 bar BMEP under various equivalence ratios.
X